Bayesian Inference for Skew-Symmetric Distributions

被引:5
|
作者
Ghaderinezhad, Fatemeh [1 ]
Ley, Christophe [1 ]
Loperfido, Nicola [2 ]
机构
[1] Univ Ghent, Dept Appl Math Comp Sci & Stat, Krijgslaan 281,S9,Campus Sterre, B-9000 Ghent, Belgium
[2] Univ Urbino Carlo Bo, Dipartimento Econ Soc & Polit, Via Saffi 42, I-61029 Urbino, PU, Italy
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 04期
关键词
Bayesian analysis; Jeffreys prior; matching prior; reference prior; symmetry; FISHER INFORMATION; LIKELIHOOD; REGRESSION; PRIORS; REPRESENTATION; PARAMETER; SCALE;
D O I
10.3390/sym12040491
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Skew-symmetric distributions are a popular family of flexible distributions that conveniently model non-normal features such as skewness, kurtosis and multimodality. Unfortunately, their frequentist inference poses several difficulties, which may be adequately addressed by means of a Bayesian approach. This paper reviews the main prior distributions proposed for the parameters of skew-symmetric distributions, with special emphasis on the skew-normal and the skew-t distributions which are the most prominent skew-symmetric models. The paper focuses on the univariate case in the absence of covariates, but more general models are also discussed.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] On Krylov subspace methods for skew-symmetric and shifted skew-symmetric linear systems
    Du, Kui
    Fan, Jia-Jun
    Sun, Xiao-Hui
    Wang, Fang
    Zhang, Ya-Lan
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (04)
  • [32] Natural (Non-)Informative Priors for Skew-symmetric Distributions
    Dette, Holger
    Ley, Christophe
    Rubio, Francisco
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2018, 45 (02) : 405 - 420
  • [33] Symmetric and skew-symmetric complex structures
    Bazzoni, Giovanni
    Gil-Garcia, Alejandro
    Latorre, Adela
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2021, 170
  • [34] From Symmetric to Skew-Symmetric Games
    Hao, Yaqi
    Cheng, Daizhan
    [J]. 2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 1988 - 1991
  • [35] ON SYMMETRIC AND SKEW-SYMMETRIC DETERMINANTAL VARIETIES
    HARRIS, J
    TU, LW
    [J]. TOPOLOGY, 1984, 23 (01) : 71 - 84
  • [36] Characteristic Function-based Semiparametric Inference for Skew-symmetric Models
    Potgieter, Cornelis J.
    Genton, Marc G.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (03) : 471 - 490
  • [37] Modeling skew-symmetric distributions using B-spline and penalties
    Frederic, Patrizio
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (08) : 2878 - 2890
  • [38] Classical and Bayesian Estimation of the AR(1) Model with Skew-Symmetric Innovations
    Hajrajabi, Arezo
    Fallah, Afshin
    [J]. JIRSS-JOURNAL OF THE IRANIAN STATISTICAL SOCIETY, 2019, 18 (01): : 157 - 175
  • [39] SKEW-SYMMETRIC INVARIANT THEORY
    DOUBILET, P
    ROTA, GC
    [J]. ADVANCES IN MATHEMATICS, 1976, 21 (02) : 196 - 201
  • [40] DECOMPOSABLE SKEW-SYMMETRIC FUNCTIONS
    Duzhin, S.
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (03) : 881 - 888