Policy-driven variations in oxidation potential and source apportionment of PM2.5 in Wuhan, central China

被引:16
|
作者
Deng, Mengjie [1 ]
Chen, Danhong [1 ]
Zhang, Gan [2 ]
Cheng, Hairong [1 ]
机构
[1] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430072, Peoples R China
[2] Chinese Acad Sci, Guangzhou Inst Geochem, Guangzhou 510640, Peoples R China
关键词
Oxidation potential; DTT activity; PMF; MLR; Source apportionment; BIOMASS BURNING EMISSIONS; FIRED POWER-PLANTS; CHEMICAL CHARACTERISTICS; PARTICULATE MATTER; AMBIENT PM2.5; DITHIOTHREITOL DTT; LOS-ANGELES; TEMPORAL VARIATION; SPATIAL VARIATION; SOURCE PROFILES;
D O I
10.1016/j.scitotenv.2022.158255
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
China has implemented several control measures to mitigate PM2.5 pollution and improve air quality, such as the Action Plan for the Prevention and Control of Air Pollution (APPCAP). To comprehensively assess the changes in ambient PM2.5 concentrations and the corresponding health risk with the implementation of APPCAP, this study examined PM2.5 samples collected in Wuhan in 2012/2013 and 2018 for water-soluble ions, carbonaceous fractions, and elements, respectively. Dithiothreitol (DTT) assay was used to determine the oxidation potential (OP) of PM2.5 . The positive matrix factorization (PMF) model and the multiple linear regression (MLR) model were used to analyze PM2.5 sources and the contribution of each source to the OP of PM2.5 . The results showed that PM2.5 concentrations in Wuhan decreased significantly, however, there was little change in the health risk and a significant increase in intrinsic toxicity. DTTv (the volume-normalized dithiothreitol) showed high correlations (r > 0.5, p < 0.01) with water-soluble organic carbon (WSOC), organic carbon (OC), secondary ions (NO3-, SO42-, and NH4+), and elements. Compared to 2012/2013, the contribution of vehicle emissions and secondary aerosol sources to PM2.5 increased significantly in 2018. Biomass burning sources significantly contribute to DTTv in the summer and autumn, and sec-ondary aerosol sources significantly contribute to DTTv in winter. The human health impacts from coal combustion sources remained high, while vehicle emission sources increased. In the context of decreasing PM2.5 concentrations, the role of vehicle emissions health impacts is increasingly significant due to the large increment in vehicle ownership and high inherent OP. Therefore, targeting vehicle emissions for control is of great importance for human health and needs to be given great attention in future policymaking.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Chemical characteristics and source apportionment of PM2.5 in Wuhan, China
    Huang, Fan
    Zhou, Jiabin
    Chen, Nan
    Li, Yuhua
    Li, Kuan
    Wu, Shuiping
    [J]. Journal of Atmospheric Chemistry, 2019, 76 (03): : 245 - 262
  • [2] Chemical characteristics and source apportionment of PM2.5 in Wuhan, China
    Huang, Fan
    Zhou, Jiabin
    Chen, Nan
    Li, Yuhua
    Li, Kuan
    Wu, Shuiping
    [J]. JOURNAL OF ATMOSPHERIC CHEMISTRY, 2019, 76 (03) : 245 - 262
  • [3] Chemical characteristics and source apportionment of PM2.5 in Wuhan, China
    Fan Huang
    Jiabin Zhou
    Nan Chen
    Yuhua Li
    Kuan Li
    Shuiping Wu
    [J]. Journal of Atmospheric Chemistry, 2019, 76 : 245 - 262
  • [4] Spatial and temporal characteristics of PM2.5 and source apportionment in Wuhan
    Hao, Hanzhou
    Guo, Qianqian
    [J]. INTERNATIONAL CONFERENCE ON ENERGY ENGINEERING AND ENVIRONMENTAL PROTECTION (EEEP2017), 2018, 121
  • [5] Seasonal variations and chemical characteristics of PM2.5 in Wuhan, central China
    Zhang, Fan
    Wang, Zu-wu
    Cheng, Hai-rong
    Lv, Xiao-pu
    Gong, Wei
    Wang, Xin-ming
    Zhang, Gan
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2015, 518 : 97 - 105
  • [6] Characteristics and source apportionment of PM2.5 in Jiaxing, China
    Zhipeng Zhao
    Sheng Lv
    Yihua Zhang
    Qianbiao Zhao
    Lin Shen
    Shi Xu
    Jianqiang Yu
    Jingwen Hou
    Chengyu Jin
    [J]. Environmental Science and Pollution Research, 2019, 26 : 7497 - 7511
  • [7] Characteristics and source apportionment of PM2.5 in Jiaxing, China
    Zhao, Zhipeng
    Lv, Sheng
    Zhang, Yihua
    Zhao, Qianbiao
    Shen, Lin
    Xu, Shi
    Yu, Jianqiang
    Hou, Jingwen
    Jin, Chengyu
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2019, 26 (08) : 7497 - 7511
  • [8] Source apportionment of PM2.5 and visibility in Jinan,China
    Mengtian Cheng
    Guiqian Tang
    Bo Lv
    Xingru Li
    Xinrui Wu
    Yiming Wang
    Yuesi Wang
    [J]. Journal of Environmental Sciences, 2021, 102 (04) : 207 - 215
  • [9] Source apportionment of PM2.5 and visibility in Jinan, China
    Cheng, Mengtian
    Tang, Guiqian
    Lv, Bo
    Li, Xingru
    Wu, Xinrui
    Wang, Yiming
    Wang, Yuesi
    [J]. JOURNAL OF ENVIRONMENTAL SCIENCES, 2021, 102 : 207 - 215
  • [10] Source apportionment of PM2.5 pollution in the central six districts of Beijing, China
    Zhang, Yuepeng
    Li, Xuan
    Nie, Teng
    Qi, Jun
    Chen, Jing
    Wu, Qiong
    [J]. JOURNAL OF CLEANER PRODUCTION, 2018, 174 : 661 - 669