Source apportionment of PM2.5 and visibility in Jinan, China

被引:40
|
作者
Cheng, Mengtian [1 ,2 ]
Tang, Guiqian [2 ,3 ]
Lv, Bo [4 ]
Li, Xingru [5 ]
Wu, Xinrui [2 ]
Wang, Yiming [2 ]
Wang, Yuesi [1 ,2 ,3 ]
机构
[1] Lanzhou Univ, Coll Atmospher Sci, Key Lab Semiarid Climate Change, Minist Educ, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & Atm, Beijing 100029, Peoples R China
[3] Chinese Acad Sci, Ctr Excellence Reg Atmospher Environm, Inst Urban Environm, Xiamen 361021, Peoples R China
[4] Jinan Ecol & Environm Monitoring Ctr Shandong Pro, Jinan 250000, Peoples R China
[5] Capital Normal Univ, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
PM2.5; Jinan; Source apportionment; Extinction; YANGTZE-RIVER DELTA; WATER-SOLUBLE IONS; CHEMICAL-COMPOSITIONS; PARTICULATE MATTER; LIGHT-SCATTERING; AEROSOL; IMPAIRMENT; POLLUTION; MASS; COMPONENTS;
D O I
10.1016/j.jes.2020.09.012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Atmospheric extinction is impacted by the chemical composition of particles. To better understand the chemical composition of PM2.5 (particles with diameters of less than 2.5 mu m) and its relationship with extinction, one-month sampling campaigns were carried out in four different seasons from 2013 to 2014 in Jinan, China. The seasonal average concentrations of PM2.5 were 120.9 (autumn), 156.6 (winter), 102.5 (spring), and 111.8 mu g/m(3) (summer). The reconstructed PM2.5 chemical composition showed that sulfate, nitrate, chlorine salt, organic matter (OM), mineral dust, elemental carbon (EC) and others accounted for 25%, 14%, 2%, 24%, 22%, 3% and 10%, respectively. The relationship between the chemical composition of PM2.5 and visibility was reconstructed by the IMPROVE method, and ammonium sulfate, ammonium nitrate, OM and EC dominated the visibility. Seven main sources were resolved for PM2.5, including secondary particles, coal combustion, biomass burning, industry, motor vehicle exhaust, soil dust and cooking, which accounted for 37%, 21%, 13%, 13%, 12%, 3% and 1%, respectively. The contributions of different sources to visibility were similar to those to PM2.5. With increasing severity of air pollution, the contributions of secondary particles and coal combustion increased, while the contribution of motor vehicle exhaust decreased. The results showed that coal combustion and biomass burning were still the main sources of air pollution in Jinan. (C) 2020 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.
引用
收藏
页码:207 / 215
页数:9
相关论文
共 50 条
  • [1] Source apportionment of PM2.5 and visibility in Jinan,China
    Mengtian Cheng
    Guiqian Tang
    Bo Lv
    Xingru Li
    Xinrui Wu
    Yiming Wang
    Yuesi Wang
    [J]. Journal of Environmental Sciences, 2021, 102 (04) : 207 - 215
  • [2] Chemical Characteristics and Source Apportionment of PM2.5 in Western Industrial Region of Jinan
    Guo, Jian
    Wang, Haiyong
    Liu, Shanjun
    Wang, Zhanshan
    [J]. ATMOSPHERE, 2023, 14 (05)
  • [3] Characteristics and source apportionment of PM2.5 in Jiaxing, China
    Zhipeng Zhao
    Sheng Lv
    Yihua Zhang
    Qianbiao Zhao
    Lin Shen
    Shi Xu
    Jianqiang Yu
    Jingwen Hou
    Chengyu Jin
    [J]. Environmental Science and Pollution Research, 2019, 26 : 7497 - 7511
  • [4] Characteristics and source apportionment of PM2.5 in Jiaxing, China
    Zhao, Zhipeng
    Lv, Sheng
    Zhang, Yihua
    Zhao, Qianbiao
    Shen, Lin
    Xu, Shi
    Yu, Jianqiang
    Hou, Jingwen
    Jin, Chengyu
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2019, 26 (08) : 7497 - 7511
  • [5] Chemical characteristics and source apportionment of PM2.5 in Lanzhou, China
    Tan, Jihua
    Zhang, Leiming
    Zhou, Xueming
    Duan, Jingchun
    Li, Yan
    Hu, Jingnan
    He, Kebin
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 601 : 1743 - 1752
  • [6] Chemical characteristics and source apportionment of PM2.5 in Wuhan, China
    Huang, Fan
    Zhou, Jiabin
    Chen, Nan
    Li, Yuhua
    Li, Kuan
    Wu, Shuiping
    [J]. JOURNAL OF ATMOSPHERIC CHEMISTRY, 2019, 76 (03) : 245 - 262
  • [7] Source apportionment and elemental composition of PM2.5 in Chengdu, China
    Tang, Ya
    Li, Youping
    Zhou, Hong
    Guo, Jialing
    [J]. Nature Environment and Pollution Technology, 2019, 18 (01): : 329 - 334
  • [8] Chemical characteristics and source apportionment of PM2.5 in Wuhan, China
    Fan Huang
    Jiabin Zhou
    Nan Chen
    Yuhua Li
    Kuan Li
    Shuiping Wu
    [J]. Journal of Atmospheric Chemistry, 2019, 76 : 245 - 262
  • [9] Source apportionment of ambient PM10 and PM2.5 in Haikou, China
    Fang, Xiaozhen
    Bi, Xiaohui
    Xu, Hong
    Wu, Jianhui
    Zhang, Yufen
    Feng, Yinchang
    [J]. ATMOSPHERIC RESEARCH, 2017, 190 : 1 - 9
  • [10] Development of source profiles and their application in source apportionment of PM2.5 in Xiamen, China
    Zhang, Ningning
    Zhuang, Mazhan
    Tian, Jie
    Tian, Pengshan
    Zhang, Jieru
    Wang, Qiyuan
    Zhou, Yaqing
    Huang, Rujin
    Zhu, Chongshu
    Zhang, Xuemin
    Cao, Junji
    [J]. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2016, 10 (05)