Neuro-Fuzzy Evaluation of the Software Reliability Models by Adaptive Neuro Fuzzy Inference System

被引:0
|
作者
Milovancevic, Milos [1 ]
Dimov, Aleksandar [2 ]
Spasov, Kamen Boyanov [2 ]
Vracar, Ljubomir [3 ]
Planic, Miroslav [4 ]
机构
[1] Univ Nis, Fac Mech Engn, Aleksandra Medvedeva 14, Nish 18000, Serbia
[2] St Kliment Ohridski Univ Sofia, Fac Math & Informat, Sofia, Bulgaria
[3] Univ Nis, Fac Elect Engn, Aleksandra Medvedeva 14, Nish 18000, Serbia
[4] Business & Law Fac, Belgrade, Serbia
关键词
Neuro-fuzzy; Software reliability; Different scenarios; PREDICTION; UNCERTAINTY;
D O I
10.1007/s10836-021-05964-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Software quality has become a key aspect of any electronic system. In this respect, software reliability is an important quality characteristic and there are many models that aim to estimate the reliability from different perspectives. However, there are no industry established reliability models. There is need to estimate which reliability model has the best performance. In this study several reliability models are analyzed by a soft computing approach, called adaptive neuro-fuzzy inference system (neuro-fuzzy), in order to estimate the models' capability based on root mean square errors (RMSE). Various aspects of accuracy of some of the well-known software reliability models have been used in this work. According to the results Non-Homogeneous Poisson Process Model (NHPP) is the best software reliability model. A combination of Linear Littlewood-Verall (LV) and NHPP is the optimal combination of two software reliability models. In other words, the best results could be achieved if one combines the LV and NHPP models.
引用
收藏
页码:439 / 452
页数:14
相关论文
共 50 条
  • [32] Dynamic modelling of PEMFC by adaptive neuro-fuzzy inference system
    Karimi, Milad
    Rezazadeh, Alireza
    [J]. INTERNATIONAL JOURNAL OF ELECTRIC AND HYBRID VEHICLES, 2016, 8 (04) : 289 - 301
  • [33] Geoacoustic inversion using adaptive neuro-fuzzy inference system
    Satyanarayana Yegireddi
    Arvind Kumar
    [J]. Computational Geosciences, 2008, 12 : 513 - 523
  • [34] An optimization of a planning information system using fuzzy inference system and adaptive neuro-Fuzzy inference system
    [J]. 1600, World Scientific and Engineering Academy and Society, Ag. Ioannou Theologou 17-23, Zographou, Athens, 15773, Greece (10):
  • [35] FORECASTING THE RAINFALL DATA BY ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
    Yarar, Alpaslan
    Onucyildiz, Mustafa
    Sevimli, M. Faik
    [J]. SGEM 2009: 9TH INTERNATIONAL MULTIDISCIPLINARY SCIENTIFIC GEOCONFERENCE, VOL II, CONFERENCE PROCEEDING: MODERN MANAGEMENT OF MINE PRODUCING, GEOLOGY AND ENVIRONMENTAL PROTECTION, 2009, : 191 - +
  • [36] Geoacoustic inversion using adaptive neuro-fuzzy inference system
    Yegireddi, Satyanarayana
    Kumar, Arvind
    [J]. COMPUTATIONAL GEOSCIENCES, 2008, 12 (04) : 513 - 523
  • [37] Adaptive Neuro-Fuzzy Inference System for Texture Image Classification
    Kuncoro, B. Ari
    Suharjito
    [J]. PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON AUTOMATION, COGNITIVE SCIENCE, OPTICS, MICRO ELECTRO-MECHANICAL SYSTEM, AND INFORMATION TECHNOLOGY (ICACOMIT), 2015, : 196 - 200
  • [38] Glaucoma detection using adaptive neuro-fuzzy inference system
    Huang, Mei-Ling
    Chen, Hsin-Yi
    Huang, Jian-Jun
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2007, 32 (02) : 458 - 468
  • [39] An adaptive neuro-fuzzy inference system for bridge risk assessment
    Wang, Ying-Ming
    Elhag, Taha M. S.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (04) : 3099 - 3106
  • [40] Iris Authentication Using Adaptive Neuro-Fuzzy Inference System
    Shiju, N. P.
    Kannan, D.
    [J]. JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 1841 - 1854