Invariant measures of set-valued maps

被引:12
|
作者
Artstein, Z [1 ]
机构
[1] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
关键词
D O I
10.1006/jmaa.2000.7095
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:696 / 709
页数:14
相关论文
共 50 条
  • [31] APPROXIMATION OF NONCONVEX SET-VALUED MAPS
    BENELMECHAIEKH, H
    DEGUIRE, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (05): : 379 - 384
  • [32] A SEQUENTIAL PROPERTY OF SET-VALUED MAPS
    CASCALES, B
    ORIHUELA, J
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 156 (01) : 86 - 100
  • [33] Generalized convex set-valued maps
    Benoist, J
    Popovici, N
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 288 (01) : 161 - 166
  • [34] On the Newton method for set-valued maps
    Dias, S.
    Smirnov, G.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (03) : 1219 - 1230
  • [35] A SADDLEPOINT THEOREM FOR SET-VALUED MAPS
    DINH, TL
    VARGAS, C
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (01) : 1 - 7
  • [36] Convexity criteria for set-valued maps
    Sach, PH
    Yen, ND
    [J]. SET-VALUED ANALYSIS, 1997, 5 (01): : 37 - 45
  • [37] Set-valued maps for image segmentation
    Lorenz, Thomas
    [J]. Computing and Visualization in Science, 2001, 4 (01) : 41 - 57
  • [38] AN INVERSION THEOREM FOR SET-VALUED MAPS
    AZE, D
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 37 (03) : 411 - 414
  • [39] TOPOLOGICAL ENTROPY FOR SET-VALUED MAPS
    Carrasco-Olivera, Dante
    Metzger Alvan, Roger
    Morales Rojas, Carlos Arnoldo
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (10): : 3461 - 3474
  • [40] Set optimization of set-valued risk measures
    Elisa Mastrogiacomo
    Matteo Rocca
    [J]. Annals of Operations Research, 2021, 296 : 291 - 314