Phase turbulence in Rayleigh-Benard convection

被引:1
|
作者
Xi, HW [1 ]
Li, XJ
Gunton, JD
机构
[1] Bowling Green State Univ, Dept Phys & Astron, Bowling Green, OH 43403 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[3] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA
[4] Univ Balearic Isl, Inst Mediterraneo Estudios Avanzados, CSIC, E-07071 Palma de Mallorca, Spain
关键词
D O I
10.1103/PhysRevE.62.7909
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a three-dimensional simulation of Rayleigh-Benard convection in a large aspect ratio Gamma = 60 with stress-free boundaries for a fluid Prandtl number sigma = 0.5. We find that a spatiotemporal chaotic state (phase turbulence) emerges immediately above onset, which we investigate as a function of the reduced control parameter epsilon. In particular we find that the correlation length for the vertical velocity field, the time averaged convective current, and the mean square vorticity have power law behaviors near onset, with exponents given by -1/2, 1, and 5/2 respectively. We also find that the time averaged vertical velocity and vertical vorticity fields have the same (disordered) spatial characteristics as the corresponding instantaneous patterns for these fields, and that there is no long-term phase correlation in the system. Finally, we present simple theoretical explanations for the time averaged convective current as a function of the control parameter, and for the fact that the time dependence of three global quantities (characterizing the dissipation of kinetic energy, the release of internal energy by buoyancy, and entropy flow) is essentially the same.
引用
收藏
页码:7909 / 7917
页数:9
相关论文
共 50 条
  • [1] Modification of turbulence in Rayleigh-Benard convection by phase change
    Schmidt, Laura E.
    Oresta, Paolo
    Toschi, Federico
    Verzicco, Roberto
    Lohse, Detlef
    Prosperetti, Andrea
    [J]. NEW JOURNAL OF PHYSICS, 2011, 13
  • [2] CHAOS AND TURBULENCE IN RAYLEIGH-BENARD CONVECTION
    BERGE, P
    [J]. PHYSICA SCRIPTA, 1989, 40 (03): : 381 - 385
  • [3] On the nature of turbulence in Rayleigh-Benard convection
    Evstigneev, N. M.
    Magnitskii, N. A.
    Sidorov, S. V.
    [J]. DIFFERENTIAL EQUATIONS, 2009, 45 (06) : 909 - 912
  • [4] On the nature of turbulence in Rayleigh-Benard convection
    N. M. Evstigneev
    N. A. Magnitskii
    S. V. Sidorov
    [J]. Differential Equations, 2009, 45 : 909 - 912
  • [5] Transition to turbulence scaling in Rayleigh-Benard convection
    Schumacher, Joerg
    Pandey, Ambrish
    Yakhot, Victor
    Sreenivasan, Katepalli R.
    [J]. PHYSICAL REVIEW E, 2018, 98 (03)
  • [6] Hard turbulence in rotating Rayleigh-Benard convection
    Julien, K
    Legg, S
    McWilliams, J
    Werne, J
    [J]. PHYSICAL REVIEW E, 1996, 53 (06) : R5557 - R5560
  • [7] The phase diagram of Rayleigh-Benard turbulence
    Grossmann, S
    Lohse, D
    [J]. ADVANCES IN TURBULENCE VIII, 2000, : 921 - 924
  • [8] EXPERIMENTAL ASPECTS OF THE TRANSITION TO TURBULENCE IN RAYLEIGH-BENARD CONVECTION
    DUBOIS, M
    [J]. LECTURE NOTES IN PHYSICS, 1982, 164 : 177 - 191
  • [9] On Possible Scenarios of the Transition to Turbulence in Rayleigh-Benard Convection
    Evstigneev, N. M.
    Magnitskii, N. A.
    [J]. DOKLADY MATHEMATICS, 2010, 82 (01) : 659 - 662
  • [10] SCALING OF HARD THERMAL TURBULENCE IN RAYLEIGH-BENARD CONVECTION
    CASTAING, B
    GUNARATNE, G
    HESLOT, F
    KADANOFF, L
    LIBCHABER, A
    THOMAE, S
    WU, XZ
    ZALESKI, S
    ZANETTI, G
    [J]. JOURNAL OF FLUID MECHANICS, 1989, 204 : 1 - 30