Gaussian Process Learning: A Divide-and-Conquer Approach

被引:1
|
作者
Li, Wenye [1 ]
机构
[1] Macao Polytech Inst, Cathedral Parish, Macao Sar, Peoples R China
来源
关键词
Gaussian process; Domain decomposition; Machine learning;
D O I
10.1007/978-3-319-12436-0_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Gaussian Process (GP) model is used widely in many hard machine learning tasks. In practice, it faces the challenge from scalability concerns. In this manuscript, we proposed a domain decomposition method in GP learning. It is shown that the GP model itself has the inherent capability of being trained through divide-and-conquer. Given a large GP learning problem, it can be divided into smaller problems. By solving the smaller problems and merging the solutions, it is guaranteed to reach the solution to the original problem. We further verified the efficiency and the effectiveness of the algorithm through experiments.
引用
收藏
页码:262 / 269
页数:8
相关论文
共 50 条
  • [41] Iteratively Divide-and-Conquer Learning for Nonlinear Classification and Ranking
    Wu, Ou
    Mao, Xue
    Hu, Weiming
    [J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2018, 9 (02)
  • [42] A Divide-and-Conquer Approach Towards Understanding Deep Networks
    Fu, Weilin
    Breininger, Katharina
    Schaffert, Roman
    Ravikumar, Nishant
    Maier, Andreas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT I, 2019, 11764 : 183 - 191
  • [43] EIGENVALUES OF A SYMMETRICAL TRIDIAGONAL MATRIX - A DIVIDE-AND-CONQUER APPROACH
    KRISHNAKUMAR, AS
    MORF, M
    [J]. NUMERISCHE MATHEMATIK, 1986, 48 (03) : 349 - 368
  • [44] A divide-and-conquer approach to analyze underdetermined biochemical models
    Kotte, Oliver
    Heinemann, Matthias
    [J]. BIOINFORMATICS, 2009, 25 (04) : 519 - 525
  • [45] JuliusC: A practical approach for the analysis of divide-and-conquer algorithms
    D'Alberto, P
    Nicolau, A
    [J]. LANGUAGES AND COMPILERS FOR HIGH PERFORMANCE COMPUTING, 2005, 3602 : 117 - 131
  • [46] SAR processing in small pieces - a divide-and-conquer approach
    Larsen, Yngvar
    Engen, Geir
    [J]. 10TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2014), 2014,
  • [47] A divide-and-conquer approach for genomic prediction in rubber tree using machine learning
    Aono, Alexandre Hild
    Francisco, Felipe Roberto
    Souza, Livia Moura
    Goncalves, Paulo de Souza
    Scaloppi Junior, Erivaldo J.
    Le Guen, Vincent
    Fritsche-Neto, Roberto
    Gorjanc, Gregor
    Quiles, Marcos Goncalves
    de Souza, Anete Pereira
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [48] PairRank: Online Pairwise Learning to Rank by Divide-and-Conquer
    Jia, Yiling
    Wang, Huazheng
    Guo, Stephen
    Wang, Hongning
    [J]. PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 146 - 157
  • [49] A divide-and-conquer approach for genomic prediction in rubber tree using machine learning
    Alexandre Hild Aono
    Felipe Roberto Francisco
    Livia Moura Souza
    Paulo de Souza Gonçalves
    Erivaldo J. Scaloppi Junior
    Vincent Le Guen
    Roberto Fritsche-Neto
    Gregor Gorjanc
    Marcos Gonçalves Quiles
    Anete Pereira de Souza
    [J]. Scientific Reports, 12
  • [50] Privacy-Preserving and Secure Divide-and-Conquer Learning
    Brown, Lewis C. L.
    Li, Qinghua
    [J]. 2022 IEEE/ACM 7TH SYMPOSIUM ON EDGE COMPUTING (SEC 2022), 2022, : 510 - 515