Three-dimensional hydrogen-bonded frameworks in organic crystals: a topological study

被引:72
|
作者
Baburin, Igor A.
Blatov, Vladislav A.
机构
[1] Samara State Univ, Samara 443011, Russia
[2] Int Max Planck Res Sch Dynam Proc Atoms Mol & Sol, D-01187 Dresden, Germany
关键词
D O I
10.1107/S0108768107033137
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
1551 homomolecular single hydrogen-bonded frameworks in organic crystals have been classified into 148 topological types of three-periodic nets. Different representations of hydrogenbonded frameworks as nets of molecular centroids, edge or ring nets are discussed. To study the influence of hydrogen bonds on the topology of molecular packings, 42 270 molecular crystals without hydrogen bonds have been considered. The topologies of molecular packings are found to be independent of hydrogen bonding. Analysis of 231 homomolecular frameworks composed of crystallographically different molecules shows that molecules not related by symmetry tend to form the same hydrogen-bond pattern. The relations between net topological types, space-group symmetry of crystals, site symmetry and point-group symmetry of molecules are discussed. As a result, a set of rules for the crystal design of molecular frameworks is proposed.
引用
收藏
页码:791 / 802
页数:12
相关论文
共 50 条
  • [31] Customized structures of hydrogen-bonded organic frameworks towards photocatalysis
    Ma, Chengdi
    Qin, Liyang
    Zhou, Tianhua
    Zhang, Jian
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (23) : 8992 - 9026
  • [32] Flexible hydrogen-bonded organic frameworks (HOFs): opportunities and challenges
    Li, Jiantang
    Chen, Banglin
    CHEMICAL SCIENCE, 2024, 15 (26) : 9874 - 9892
  • [33] Hydrogen-bonded organic frameworks: design, structures and potential applications
    Luo, Jie
    Wang, Jia-Wei
    Zhang, Ji-Hong
    Lai, Shan
    Zhong, Di-Chang
    CRYSTENGCOMM, 2018, 20 (39): : 5884 - 5898
  • [34] Hydrogen-Bonded Organic Frameworks as a Tunable Platform for Functional Materials
    Wang, Bin
    Lin, Rui-Biao
    Zhang, Zhangjing
    Xiang, Shengchang
    Chen, Banglin
    Journal of the American Chemical Society, 2020, 142 (34): : 14399 - 14416
  • [35] Hydrogen-Bonded Organic Frameworks as an Appealing Platform for Luminescent Sensing
    Xiong, Zhile
    Xiang, Shengchang
    Lv, Yuanchao
    Chen, Banglin
    Zhang, Zhangjing
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (26)
  • [36] Designing Hydrogen-Bonded Organic Frameworks (HOFs) with Permanent Porosity
    Hisaki, Ichiro
    Xin, Chen
    Takahashi, Kiyonori
    Nakamura, Takayoshi
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (33) : 11160 - 11170
  • [37] Biomimetic chiral hydrogen-bonded organic-inorganic frameworks
    Guo, Jun
    Duan, Yulong
    Jia, Yunling
    Zhao, Zelong
    Gao, Xiaoqing
    Liu, Pai
    Li, Fangfang
    Chen, Hongli
    Ye, Yutong
    Liu, Yujiao
    Zhao, Meiting
    Tang, Zhiyong
    Liu, Yi
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [38] Hydrogen-bonded organic frameworks: new horizons in biomedical applications
    Yu, Dongqin
    Zhang, Haochen
    Ren, Jinsong
    Qu, Xiaogang
    CHEMICAL SOCIETY REVIEWS, 2023, 52 (21) : 7504 - 7523
  • [39] Hybrid Hydrogen-Bonded Organic Frameworks: Structures and Functional Applications
    Liu, Ying
    Chang, Ganggang
    Zheng, Fang
    Chen, Lihang
    Yang, Qiwei
    Ren, Qilong
    Bao, Zongbi
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (14)
  • [40] Functional Composite Materials Based on Hydrogen-Bonded Organic Frameworks
    Guo, Yixuan
    Wang, Chen
    Mo, Guanglai
    Wang, Yao
    Song, Xiyu
    Li, Peng
    CRYSTAL GROWTH & DESIGN, 2023, 23 (11) : 7635 - 7646