Dual Cayley-Klein parameters and Mobius transform: Theory and applications

被引:16
|
作者
Pennestri, E. [1 ]
Valentini, P. P. [1 ]
Figliolini, G. [2 ]
Angeles, J. [3 ]
机构
[1] Univ Roma Tor Vergata, Dept Enterprise Engn, Via Politecn 1, I-00133 Rome, Italy
[2] Univ Cassino & Southern Lazio, Dept Civil & Mech Engn, Via G di Biasio 43, I-03043 Cassino, Italy
[3] McGill Univ, Dept Mech Engn, 817 Sherbrooke St W, Montreal, PQ H3A 0C3, Canada
关键词
Clifford algebra; Cayley-Klein parameters; Quaternions; Kinematics; ROTATION;
D O I
10.1016/j.mechmachtheory.2016.08.008
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The paper focuses on the use of Cayley-Klein (CK) parameters in the description of rigid body kinematics. After a brief historical overview, an introduction to this concept is offered. New formulas for first and second time derivatives of 2 x 2 transforms based on the CK parameters are herein derived. These formulas are extended also to dual numbers. Based on these results, the kinematic analysis methodology originally due to Denavit is completed, thereby allowing for the velocity and acceleration analysis of spatial linkages. Different numerical examples with applications of the concepts proposed here are included. (C) 2016 International Federation for the Promotion of Mechanism and Machine Science Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:50 / 67
页数:18
相关论文
共 50 条
  • [1] Parallel Manipulators in Terms of Dual Cayley-Klein Parameters
    Nawratil, G.
    COMPUTATIONAL KINEMATICS, 2018, 50 : 265 - 273
  • [2] Burmester theory in Cayley-Klein planes with affine base
    Eren, Kemal
    Ersoy, Soley
    JOURNAL OF GEOMETRY, 2018, 109 (03)
  • [3] THE CAYLEY-KLEIN PARAMETERS AND GEOMETRICAL PICTURE OF THE MULTILEVEL SYSTEM EVOLUTION
    DATTOLI, G
    RICHETTA, M
    TORRE, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1989, 104 (06): : 665 - 683
  • [4] REPRESENTATIONS OF CAYLEY-KLEIN ORTHOGONAL ALGEBRAS
    GROMOV, NA
    PHYSICS OF ATOMIC NUCLEI, 1993, 56 (08) : 1124 - 1134
  • [5] FINITE CAYLEY-KLEIN GEOMETRIES
    STRUVE, H
    STRUVE, R
    ARCHIV DER MATHEMATIK, 1987, 48 (02) : 178 - 184
  • [6] Orthogonal Cayley-Klein Groups
    Struve R.
    Results in Mathematics, 2005, 48 (1-2) : 168 - 183
  • [7] Propellers in Affine Cayley-Klein Planes
    Spirova, Margarita
    JOURNAL OF GEOMETRY, 2009, 93 (1-2) : 164 - 177
  • [8] Multiple Cayley-Klein metric learning
    Bi, Yanhong
    Fan, Bin
    Wu, Fuchao
    PLOS ONE, 2017, 12 (09):
  • [9] CAYLEY-KLEIN POISSON HOMOGENEOUS SPACES
    Herranz, Francisco J.
    Ballesteros, Angel
    Gutierrez-Sagredo, Ivan
    Santander, Mariano
    PROCEEDINGS OF THE TWENTIETH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2019, : 161 - 183
  • [10] REPRESENTATIONS OF UNITARY CAYLEY-KLEIN ALGEBRAS
    GROMOV, NA
    PHYSICS OF ATOMIC NUCLEI, 1993, 56 (08) : 1135 - 1142