Multiple Cayley-Klein metric learning

被引:1
|
作者
Bi, Yanhong [1 ,2 ]
Fan, Bin [1 ]
Wu, Fuchao [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
来源
PLOS ONE | 2017年 / 12卷 / 09期
基金
中国国家自然科学基金;
关键词
D O I
10.1371/journal.pone.0184865
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As a specific kind of non-Euclidean metric lies in projective space, Cayley-Klein metric has been recently introduced in metric learning to deal with the complex data distributions in computer vision tasks. In this paper, we extend the original Cayley-Klein metric to the multiple Cayley-Klein metric, which is defined as a linear combination of several Cayley-Klein metrics. Since Cayley-Klein is a kind of non-linear metric, its combination could model the data space better, thus lead to an improved performance. We show how to learn a multiple Cayley-Klein metric by iterative optimization over single Cayley-Klein metric and their combination coefficients under the objective to maximize the performance on separating interclass instances and gathering intra-class instances. Our experiments on several benchmarks are quite encouraging.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Beyond Mahalanobis Metric: Cayley-Klein Metric Learning
    Bi, Yanhong
    Fan, Bin
    Wu, Fuchao
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 2339 - 2347
  • [2] Cayley-Klein Metric Learning with Shrinkage-Expansion Constraints
    Bi, Yanhong
    Fan, Bin
    Wu, Fuchao
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 43 - 48
  • [3] Cayley-Klein geometries and projective-metric geometry
    Struve, Horst
    Struve, Rolf
    JOURNAL OF GEOMETRY, 2022, 113 (02)
  • [4] FOUNDATIONS OF MULTIDIMENSIONAL METRIC SCALING IN CAYLEY-KLEIN GEOMETRIES
    DROSLER, J
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1979, 32 (NOV): : 185 - 211
  • [5] Recognition of Group Activities Using Complex Wavelet Domain Based Cayley-Klein Metric Learning
    Gensheng Hu
    Min Li
    Dong Liang
    Mingzhu Wan
    Wenxia Bao
    JournalofBeijingInstituteofTechnology, 2018, 27 (04) : 592 - 603
  • [6] REPRESENTATIONS OF CAYLEY-KLEIN ORTHOGONAL ALGEBRAS
    GROMOV, NA
    PHYSICS OF ATOMIC NUCLEI, 1993, 56 (08) : 1124 - 1134
  • [7] FINITE CAYLEY-KLEIN GEOMETRIES
    STRUVE, H
    STRUVE, R
    ARCHIV DER MATHEMATIK, 1987, 48 (02) : 178 - 184
  • [8] Orthogonal Cayley-Klein Groups
    Struve R.
    Results in Mathematics, 2005, 48 (1-2) : 168 - 183
  • [9] Propellers in Affine Cayley-Klein Planes
    Spirova, Margarita
    JOURNAL OF GEOMETRY, 2009, 93 (1-2) : 164 - 177
  • [10] CAYLEY-KLEIN POISSON HOMOGENEOUS SPACES
    Herranz, Francisco J.
    Ballesteros, Angel
    Gutierrez-Sagredo, Ivan
    Santander, Mariano
    PROCEEDINGS OF THE TWENTIETH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2019, : 161 - 183