Tensor ranks and symmetric tensor ranks are the same for points with low symmetric tensor rank

被引:0
|
作者
Ballico, E. [1 ]
机构
[1] Univ Trent, Dept Math, I-38123 Povo, TN, Italy
关键词
Tensor rank; Symmetric tensor rank; Segre variety; Veronese variety;
D O I
10.1007/s00013-011-0274-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fix integers n >= 1, d >= 2. Let V be an (n + 1)-dimensional vector space over a field with characteristic zero. Fix a symmetric tensor T is an element of S(d)(V) subset of V(circle times d). Here we prove that the tensor rank of T is equal to its symmetric tensor rank if the latter is at most (d + 1)/2.
引用
收藏
页码:531 / 534
页数:4
相关论文
共 50 条
  • [21] Tensor topologies on spaces of symmetric tensor products
    Ansemil, Jose M.
    Ponte, Socorro
    NOTE DI MATEMATICA, 2006, 25 (01): : 35 - 47
  • [22] Tensor Methods for Solving Symmetric -tensor Systems
    Xie, Ze-Jia
    Jin, Xiao-Qing
    Wei, Yi-Min
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (01) : 412 - 425
  • [23] SYMMETRIC CURVATURE TENSOR
    Heydari, A.
    Boroojerdian, N.
    Peyghan, E.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2011, 37 (03): : 249 - 267
  • [24] Tensor ranks on tangent developable of Segre varieties
    Ballico, E.
    Bernardi, A.
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (07): : 881 - 894
  • [25] On Tensor-Train Ranks of Tensorized Polynomials
    Vysotsky, Lev
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2019), 2020, 11958 : 189 - 196
  • [26] Symmetric tensor decomposition
    Brachat, Jerome
    Comon, Pierre
    Mourrain, Bernard
    Tsigaridas, Elias
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (11-12) : 1851 - 1872
  • [27] Boolean circuits, tensor ranks, and communication complexity
    Pudlak, P
    Rodl, V
    Sgall, J
    SIAM JOURNAL ON COMPUTING, 1997, 26 (03) : 605 - 633
  • [28] Tensor-train ranks for matrices and their inverses
    Oseledets, Ivan
    Tyrtyshnikov, Eugene
    Zamarashkin, Nickolai
    Computational Methods in Applied Mathematics, 2011, 11 (03) : 394 - 403
  • [29] Partially symmetric tensor rank: the description of the non-uniqueness case for low rank
    Ballico, E.
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (03): : 608 - 624
  • [30] Asymptotic properties of tensor powers in symmetric tensor categories
    Coulembier, Kevin
    Etingof, Pavel
    Ostrik, Victor
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2024, 20 (03) : 1141 - 1179