On secant dimensions and identifiability of flag varieties

被引:1
|
作者
Freire, Ageu Barbosa [1 ]
Casarotti, Alex [2 ]
Massarenti, Alex [2 ]
机构
[1] Univ Fed Fluminense, Inst Matemat & Estat, Campus Gragoata,Rua Alexandre Moura 8, BR-24210200 Niteroi, RJ, Brazil
[2] Univ Ferrara, Dipartimento Matemat & Informat, Via Machiavelli 30, I-44121 Ferrara, Italy
关键词
Flag varieties; Secant varieties; Identifiability; CANONICAL POLYADIC DECOMPOSITION; SEGRE VARIETIES; UNIQUENESS; TENSORS; DEFECTIVITY;
D O I
10.1016/j.jpaa.2021.106969
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the secant dimensions and the identifiability of flag varieties parametrizing flags of subspaces of a fixed vector space. We give numerical conditions ensuring that secant varieties of flag varieties have the expected dimension, and that a general point on these secant varieties is identifiable. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Identifiability and singular locus of secant varieties to Grassmannians
    Galgano, Vincenzo
    Staffolani, Reynaldo
    [J]. COLLECTANEA MATHEMATICA, 2024,
  • [2] On secant defectiveness and identifiability of Segre-Veronese varieties
    Laface, Antonio
    Massarenti, Alex
    Rischter, Rick
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (05) : 1605 - 1635
  • [3] The possible dimensions of the higher secant varieties
    CatalanoJohnson, ML
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1996, 118 (02) : 355 - 361
  • [4] On the dimensions of secant varieties of Segre-Veronese varieties
    Abo, Hirotachi
    Brambilla, Maria Chiara
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2013, 192 (01) : 61 - 92
  • [5] On the dimensions of secant varieties of Segre-Veronese varieties
    Hirotachi Abo
    Maria Chiara Brambilla
    [J]. Annali di Matematica Pura ed Applicata, 2013, 192 : 61 - 92
  • [6] Identifiability for the k-secant variety of the Segre-Veronese varieties
    Ballico, E.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6441 - 6451
  • [7] Secant dimensions of low-dimensional homogeneous varieties
    Baur, Karin
    Draisma, Jan
    [J]. ADVANCES IN GEOMETRY, 2010, 10 (01) : 1 - 29
  • [8] DIMENSIONS OF AFFINE DELIGNE-LUSZTIG VARIETIES IN AFFINE FLAG VARIETIES
    Goertz, Ulrich
    He, Xuhua
    [J]. DOCUMENTA MATHEMATICA, 2010, 15 : 1009 - 1028
  • [9] Adjoint varieties and their secant varieties
    Kaji, H
    Ohno, M
    Yasukura, O
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 1999, 10 (01): : 45 - 57
  • [10] Secant varieties of Grassmann varieties
    Catalisano, MV
    Geramita, AV
    Gimigliano, A
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) : 633 - 642