On the dimensions of secant varieties of Segre-Veronese varieties

被引:29
|
作者
Abo, Hirotachi [1 ]
Brambilla, Maria Chiara [2 ]
机构
[1] Univ Idaho, Dept Math, Moscow, ID 83844 USA
[2] Univ Politecn Marche, Dipartimento Sci Matemat, Ancona, Italy
基金
美国国家科学基金会;
关键词
Secant varieties; Segre-Veronese varieties; Defective varieties; Horace method; Partially symmetric tensors; CURVES;
D O I
10.1007/s10231-011-0212-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper explores the dimensions of higher secant varieties to Segre-Veronese varieties. The main goal of this paper is to introduce two different inductive techniques. These techniques enable one to reduce the computation of the dimension of the secant variety in a high-dimensional case to the computation of the dimensions of secant varieties in low-dimensional cases. As an application of these inductive approaches, we will prove non-defectivity of secant varieties of certain two-factor Segre-Veronese varieties. We also use these methods to give a complete classification of defective sth Segre-Veronese varieties for small s. In the final section, we propose a conjecture about defective two-factor Segre-Veronese varieties.
引用
收藏
页码:61 / 92
页数:32
相关论文
共 50 条
  • [1] On the dimensions of secant varieties of Segre-Veronese varieties
    Hirotachi Abo
    Maria Chiara Brambilla
    [J]. Annali di Matematica Pura ed Applicata, 2013, 192 : 61 - 92
  • [2] Secant varieties of Segre-Veronese varieties
    Raicu, Claudiu
    [J]. ALGEBRA & NUMBER THEORY, 2012, 6 (08) : 1817 - 1868
  • [3] New examples of defective secant varieties of Segre-Veronese varieties
    Abo, Hirotachi
    Brambilla, Maria Chiara
    [J]. COLLECTANEA MATHEMATICA, 2012, 63 (03) : 287 - 297
  • [4] On secant defectiveness and identifiability of Segre-Veronese varieties
    Laface, Antonio
    Massarenti, Alex
    Rischter, Rick
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (05) : 1605 - 1635
  • [5] ON NON-SECANT DEFECTIVITY OF SEGRE-VERONESE VARIETIES
    Araujo, Carolina
    Massarenti, Alex
    Rischter, Rick
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (04) : 2255 - 2278
  • [6] Identifiability for the k-secant variety of the Segre-Veronese varieties
    Ballico, E.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6441 - 6451
  • [7] Tangential varieties of Segre-Veronese varieties
    Oeding, Luke
    Raicu, Claudiu
    [J]. COLLECTANEA MATHEMATICA, 2014, 65 (03) : 303 - 330
  • [8] Secant varieties of Segre-Veronese embeddings of (P1)r
    Laface, Antonio
    Postinghel, Elisa
    [J]. MATHEMATISCHE ANNALEN, 2013, 356 (04) : 1455 - 1470
  • [9] Horrocks splitting on Segre-Veronese varieties
    Schreyer, Frank-Olaf
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (02) : 1351 - 1358
  • [10] A note on the cactus rank for Segre-Veronese varieties
    Ballico, Edoardo
    Bernardi, Alessandra
    Gesmundo, Fulvio
    [J]. JOURNAL OF ALGEBRA, 2019, 526 : 6 - 11