Modulus and the Poincare inequality on metric measure spaces

被引:87
|
作者
Keith, S [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
D O I
10.1007/s00209-003-0542-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to develop the understanding of modulus and the Poincare inequality, as defined on metric measure spaces. Various definitions for modulus and capacity are shown to coincide for general collections of metric measure spaces. Consequently, modulus is shown to be upper semi-continuous with respect to the limit of a sequence of curve families contained in a converging sequence of metric measure spaces. Moreover, several competing definitions for the Poincare inequality are shown to coincide, if the underlying measure is doubling. One such characterization considers only continuous functions and their continuous upper gradients, and extends work of Heinonen and Koskela. Applications include showing that the p-Poincare inequality (with a doubling measure), for p greater than or equal to 1, persists through to the limit of a sequence of converging pointed metric measure spaces - this extends results of Cheeger. A further application is the construction of new doubling measures in Euclidean space which admit a 1-Poincare inequality.
引用
收藏
页码:255 / 292
页数:38
相关论文
共 50 条