A 120-target brain-computer interface based on code-modulated visual evoked potentials

被引:9
|
作者
Sun, Qingyu [1 ,2 ]
Zheng, Li [1 ,2 ]
Pei, Weihua [1 ,2 ]
Gao, Xiaorong [1 ,3 ]
Wang, Yijun [1 ,2 ,4 ]
机构
[1] Inst Semicond, Chinese Acad Sci, State Key Lab Integrated Optoelect, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Sch Future Technol, Beijing 100049, Peoples R China
[3] Tsinghua Univ, Dept Biomed Engn, Beijing 100084, Peoples R China
[4] Chinese Inst Brain Res, Beijing 102206, Peoples R China
基金
国家重点研发计划;
关键词
Brain-computer interface (BCI); Code-modulated visual evoked potential (c-; VEP); Electroencephalogram (EEG); FREQUENCY RECOGNITION; PROSTHESIS;
D O I
10.1016/j.jneumeth.2022.109597
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background:In recent years, numerous studies on the brain-computer interface (BCI) have been published. However, the number of targets in most of the existing studies was not enough for many practical applications. New method:To achieve highly efficient communications, this study proposed a 120-target BCI system based on code-modulated visual evoked potentials (c-VEPs). Four 31-bit pseudorandom codes were used, and each code generated 30 targets by cyclic shift with a lag of 1 bit. Results:In the online experiments, subjects could select one target in 1.04 s (0.52 s for stimulation and 0.52 s for gaze shifting) with an average information transfer rate (ITR) of 265.74 bits/min. Comparison with existing method: The proposed system achieved more targets and higher ITR than other recent cVEP based studies. which attributes to the optimal code combination and the 1-bit lag. Conclusion:The results illustrate that the proposed BCI system can achieve a high ITR with a short stimulation time. In addition, the c-VEP paradigm can shorten the training time, which ensures practicality in real applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A Hybrid Brain-Computer Interface Based on Visual Evoked Potential and Pupillary Response
    Jiang, Lu
    Li, Xiaoyang
    Pei, Weihua
    Gao, Xiaorong
    Wang, Yijun
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2022, 16
  • [42] Development of brain-computer interface using visual evoked potential
    Ogawa, Yuki
    Ushiba, Junichi
    Tomita, Yutaka
    Masakado, Yoshihisa
    Kimura, Akio
    Liu, Meigen
    [J]. NEUROSCIENCE RESEARCH, 2008, 61 : S54 - S54
  • [43] A Brain Computer Interface for Robust Wheelchair Control Application Based on Pseudorandom Code Modulated Visual Evoked Potential
    Mohebbi, Ali
    Engelsholm, Signe K. D.
    Puthusserypady, Sadasivan
    Kjaer, Troels W.
    Thomsen, Carsten E.
    Sorensen, Helge B. D.
    [J]. 2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 602 - 605
  • [44] Multiple AM Modulated Visual Stimuli in Brain-Computer Interface
    Lopez, M. -A.
    Pomares, H.
    Prieto, A.
    Pelayo, F.
    [J]. BIO-INSPIRED SYSTEMS: COMPUTATIONAL AND AMBIENT INTELLIGENCE, PT 1, 2009, 5517 : 683 - +
  • [45] Classification of code-modulated visual evoked potentials using adaptive modified covariance beamformer and EEG signals
    Zarei, Asghar
    Asl, Babak Mohammadzadeh
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 221
  • [46] xDAWN Algorithm to Enhance Evoked Potentials: Application to Brain-Computer Interface
    Rivet, Bertrand
    Souloumiac, Antoine
    Attina, Virginie
    Gibert, Guillaume
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2009, 56 (08) : 2035 - 2043
  • [47] Brain-computer interfaces based on visual evoked potentials - Feasibility of practical system designs
    Wang, Yijun
    Gao, Xiaorong
    Hong, Bo
    Jia, Chuan
    Gao, Shangkai
    [J]. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2008, 27 (05): : 64 - 71
  • [48] Navigating a Smart Wheelchair with a Brain-Computer Interface Interpreting Steady-State Visual Evoked Potentials
    Mandel, Christian
    Lueth, Thorsten
    Laue, Tim
    Roefer, Thomas
    Graeser, Axel
    Krieg-Brueckner, Bernd
    [J]. 2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2009, : 1118 - 1125
  • [49] Steady State Visual Evoked Potential Based Brain-Computer Interface for Cognitive Assessment
    Westergren, Nicolai
    Bendtsen, Rasmus L.
    Kjaer, Troels W.
    Thomsen, Carsten E.
    Puthusserypady, S.
    Sorensen, Helge B. D.
    [J]. 2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 1508 - 1511
  • [50] A novel monitor for practical brain-computer interface applications based on visual evoked potential
    Maymandi, Hamidreza
    Perez Benitez, Jorge Luis
    Gallegos-Funes, F.
    Perez Benitez, J. A.
    [J]. BRAIN-COMPUTER INTERFACES, 2021, 8 (1-2) : 1 - 13