Data-driven fault identification of ageing wind turbine

被引:2
|
作者
Liu, Yue [1 ]
Zhang, Long [1 ]
机构
[1] Univ Manchester, Dept Elect Elect Engn, Manchester, Lancs, England
关键词
D O I
10.1109/Control55989.2022.9781452
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes an ageing evaluation method for wind turbine system by using a data driven method. This method directly uses the input and output data of the wind turbine system, and the autoregressive with exogenous (ARX) model to identify the wind turbine system. The input and output data include wind speed, generated power, and pitch angle, and they are generated by a wind turbine simulation model with four ageing cases: mechanical power, magnetizing inductance, pitch angle controller gain and pitch angle change rate. By using the generated power and pitch angle data of wind turbine under different ageing levels, the data-driven models can be obtained. By comparing the model parameters in different states identified by the ARX model, results show that the degree of ageing can be reflected by the parameter changes. This demonstrates that the method can detect the ageing of wind turbines.
引用
收藏
页码:183 / 188
页数:6
相关论文
共 50 条
  • [1] Wind Turbine Data-Driven Intelligent Fault Detection
    Simani, Silvio
    Farsoni, Saverio
    Castaldi, Paolo
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, INTELLISYS 2023, 2024, 823 : 50 - 60
  • [2] Dynamic data-driven fault diagnosis of wind turbine systems
    Ding, Yu
    Byon, Eunshin
    Park, Chiwoo
    Tang, Jiong
    Lu, Yi
    Wang, Xin
    [J]. COMPUTATIONAL SCIENCE - ICCS 2007, PT 1, PROCEEDINGS, 2007, 4487 : 1197 - +
  • [3] Vibration data-driven fault detection for wind turbine gearbox
    Wang, Ji
    Wu, Jun
    Chen, Zuoyi
    Li, Guoqiang
    Wang, Yuanhang
    [J]. 2018 IEEE 8TH INTERNATIONAL CONFERENCE ON UNDERWATER SYSTEM TECHNOLOGY: THEORY AND APPLICATIONS (USYS), 2018,
  • [4] DATA-DRIVEN TECHNIQUES FOR THE FAULT DIAGNOSIS OF A WIND TURBINE BENCHMARK
    Simani, Silvio
    Farsoni, Saverio
    Castaldi, Paolo
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2018, 28 (02) : 247 - 268
  • [5] Data-driven Sensor Fault Estimation for the Wind Turbine Systems
    Rahimilarki, Reihane
    Gao, Zhiwei
    Jin, Nanlin
    Binns, Richard
    Zhang, Aihua
    [J]. 2020 IEEE 29TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2020, : 1211 - 1216
  • [6] Data-driven fault detection and isolation scheme for a wind turbine benchmark
    de Bessa, Iury Valente
    Palhares, Reinaldo Martinez
    Silveira Vasconcelos D'Angelo, Marcos Flavio
    Chaves Filho, Joao Edgar
    [J]. RENEWABLE ENERGY, 2016, 87 : 634 - 645
  • [7] Fault Warning and Reliability Analysis of Wind Turbine Failure Based on Data-driven
    Li, Yinglong
    Ma, Zewen
    Feng, Jiakai
    Zhang, Ronghao
    Fu, Ningtao
    Liang, Dingkang
    [J]. 2024 THE 8TH INTERNATIONAL CONFERENCE ON GREEN ENERGY AND APPLICATIONS, ICGEA 2024, 2024, : 28 - 32
  • [8] Automated Fault Detection of Wind Turbine Gearbox using Data-Driven Approach
    Praveenl, Hemanth Mithun
    Tejas
    Sabareesh, G. R.
    [J]. INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT, 2019, 10 (01)
  • [9] Data-driven multiscale sparse representation for bearing fault diagnosis in wind turbine
    Guo, Yanjie
    Zhao, Zhibin
    Sun, Ruobin
    Chen, Xuefeng
    [J]. WIND ENERGY, 2019, 22 (04) : 587 - 604
  • [10] Hybrid Classifier for Fault Detection and Isolation in Wind Turbine based on Data-Driven
    Fadili, Yassine
    Boumhidi, Ismail
    [J]. 2017 INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV), 2017,