Data-driven multiscale sparse representation for bearing fault diagnosis in wind turbine

被引:19
|
作者
Guo, Yanjie [1 ]
Zhao, Zhibin [1 ]
Sun, Ruobin [1 ]
Chen, Xuefeng [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
bearing; fault detection; K-SVD; sparse representation; wind turbine; FEATURE-EXTRACTION; SIGNAL ANALYSIS; TRANSFORM; DECOMPOSITION; GEARBOXES; MODEL; LIFE;
D O I
10.1002/we.2309
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the increase of the wind turbine capacity, failures occur on the drivetrain of wind turbines frequently. Since faults of bearings in the wind turbine can lead to long downtime and even casualties, fault diagnosis of the drivetrain is very important to reduce the maintenance cost of the wind turbine and improve economic efficiency. However, the traditional diagnosis methods have difficulty in extracting the impulsive components from the vibration signal of the wind turbine because of heavy background noise and harmonic interference. In this paper, we propose a novel method based on data-driven multiscale dictionary construction. Firstly, we achieve the useful atom through training the K-means singular value decomposition (K-SVD) model with a standard signal. Secondly, we deform the chosen atom into different shapes and construct the final dictionary. Thirdly, the constructed dictionary is used to sparsely represent the vibration signal, and orthogonal matching pursuit (OMP) is performed to extract the impulsive component. The proposed method is robust to harmonic interference and heavy background noise. Moreover, the effectiveness of the proposed method is validated by numerical simulation and two experimental cases including the bearing fault of the wind turbine generator in the field test. The overall results indicate that compared with traditional methods, the proposed method is able to extract the fault characteristics from the measured signals more efficiently.
引用
收藏
页码:587 / 604
页数:18
相关论文
共 50 条
  • [1] Dynamic data-driven fault diagnosis of wind turbine systems
    Ding, Yu
    Byon, Eunshin
    Park, Chiwoo
    Tang, Jiong
    Lu, Yi
    Wang, Xin
    [J]. COMPUTATIONAL SCIENCE - ICCS 2007, PT 1, PROCEEDINGS, 2007, 4487 : 1197 - +
  • [2] DATA-DRIVEN TECHNIQUES FOR THE FAULT DIAGNOSIS OF A WIND TURBINE BENCHMARK
    Simani, Silvio
    Farsoni, Saverio
    Castaldi, Paolo
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2018, 28 (02) : 247 - 268
  • [3] Wind Turbine Bearing Fault Diagnosis Based on Sparse Representation of Condition Monitoring Signals
    Wang, Jun
    Qiao, Wei
    Qu, Liyan
    [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2019, 55 (02) : 1844 - 1852
  • [4] Wind Turbine Bearing Fault Diagnosis Based on Sparse Representation of Condition Monitoring Signals
    Wang, Jun
    Qiao, Wei
    Qu, Liyan
    [J]. 2017 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2017, : 3696 - 3702
  • [5] Fault Diagnosis of Turbine Based on Data-Driven
    Liao, Wei
    Li, Feng
    Han, Pu
    [J]. ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL II, PROCEEDINGS, 2009, : 499 - +
  • [6] Data-driven fault identification of ageing wind turbine
    Liu, Yue
    Zhang, Long
    [J]. 2022 UKACC 13TH INTERNATIONAL CONFERENCE ON CONTROL (CONTROL), 2022, : 183 - 188
  • [7] Wind Turbine Data-Driven Intelligent Fault Detection
    Simani, Silvio
    Farsoni, Saverio
    Castaldi, Paolo
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, INTELLISYS 2023, 2024, 823 : 50 - 60
  • [8] DATA-DRIVEN MODEL-BASED FAULT DIAGNOSIS IN A WIND TURBINE WITH ACTUATOR FAULTS
    Badihi, Hamed
    Rad, Javad Soltani
    Zhang, Youmin
    Hong, Henry
    [J]. ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2014, VOL 4B, 2015,
  • [9] Data-Driven Bearing Fault Diagnosis for Induction Motor
    Raqeeb, Aqib
    Shah, Fahim
    Alam, Zaheer
    Choudhury, Subhashree
    Khan, Bilal
    Palanisamy, R.
    [J]. JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2023, 2023
  • [10] Vibration data-driven fault detection for wind turbine gearbox
    Wang, Ji
    Wu, Jun
    Chen, Zuoyi
    Li, Guoqiang
    Wang, Yuanhang
    [J]. 2018 IEEE 8TH INTERNATIONAL CONFERENCE ON UNDERWATER SYSTEM TECHNOLOGY: THEORY AND APPLICATIONS (USYS), 2018,