Microporous polyvinyl chloride:: novel reactor for PVC/CaCO3 nanocomposites

被引:23
|
作者
Xiong, CX [1 ]
Lu, SJ
Wang, DY
Dong, LJ
Jiang, DD
Wang, QG
机构
[1] Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
[2] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
关键词
D O I
10.1088/0957-4484/16/9/063
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Microporous polyvinyl chloride (PVC) with pore size of 0.2-2 mu m has been obtained by the foaming of PVC powders using a solution of 2,2'-azo-bis-iso-butyronitrile in a co-solvent of butanone and cyclohexanone. The PVC/CaCO3 hybrid powders deposited with CaCO3 nanoparticles have been synthesized using the microporous PVC as reactors of CaCO3 nanoparticles, i.e., the reaction of Ca(OH)(2) with CO2 occurs inside the pore of microporous PVC. The in situ PVC/CaCO3 nanocomposites have been prepared by melt blending in situ PVC/CaCO3 hybrid powders. The images of SEM and TEM show that the in situ CaCO3 nanoparticles are uniformly dispersed in the PVC matrix and the sizes of the CaCO3 nanoparticles are less than 50 nm. TEM images and XRD patterns for the in situ CaCO3 strongly suggest that pseudo-amorphous crystals and defect-rich crystals are formed. The mechanical properties and DMA data indicate that the in situ PVC/CaCO3 nanocomposites exhibit much higher strength, toughness, modulus and glass temperature than common PVC/CaCO3 nanocomposites. This novel nanotechnology has potential applications in preparation of organic-inorganic hybrid nanocomposites.
引用
收藏
页码:1787 / 1792
页数:6
相关论文
共 50 条
  • [21] Green flotation of polyethylene terephthalate and polyvinyl chloride assisted by surface modification of selective CaCO3 coating
    Zhang, Yingshuang
    Jiang, Hongru
    Wang, Kangyu
    Wang, Hui
    Wang, Chongqing
    [J]. JOURNAL OF CLEANER PRODUCTION, 2020, 242 (242)
  • [22] Measurement of AC and DC relaxation properties in polyvinyl chloride (PVC) nanocomposites
    Rajesh
    Kaur, Dalveer
    Gaur, M. S.
    Goyal, Pankaj
    Tiwari, R. K.
    Rogachev, A. A.
    Rogachev, A. V.
    [J]. MEASUREMENT, 2019, 135 : 323 - 332
  • [23] Structure of microporous polypropylene sheets containing CaCO3 filler
    Nago, Satoshi
    Nakamura, Shunichi
    Mizutani, Yukio
    [J]. Journal of Applied Polymer Science, 1992, 45 (09): : 1527 - 1535
  • [24] Thermal stability of CaCO3/polyethylene (PE) nanocomposites
    Sahebian, S.
    Mosavian, M. T. Hamed
    [J]. POLYMERS & POLYMER COMPOSITES, 2019, 27 (07): : 371 - 382
  • [25] On the strain rate sensitivity of HDPE/CaCO3 nanocomposites
    Zebarjad, S. M.
    Sajjadi, S. A.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 475 (1-2): : 365 - 367
  • [26] Study on ABS/PVC blend modified with CaCO3 nanoparticles
    Song, Ji-Rui
    Chen, Jian-Feng
    Wang, Guo-Quan
    Zeng, Xiao-Fei
    [J]. Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2005, 21 (05): : 262 - 265
  • [27] CaCO3在PVC材料中的应用
    吴香发
    何杰
    贾仁广
    汪洋
    [J]. 聚氯乙烯, 2006, (03) : 7 - 11
  • [28] Novel PMMA/CaCO3 nanocomposites abrasion resistant prepared by an in situ polymerization process
    Avella, M
    Errico, ME
    Martuscelli, E
    [J]. NANO LETTERS, 2001, 1 (04) : 213 - 217
  • [29] Ultraviolet Light Aging Properties of PVC/CaCO3 Composites
    Liu, Hai
    Dong, Lijie
    Xie, Haian
    Wan, Lipeng
    Liu, Zhukai
    Xiong, Chuanxi
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 127 (04): : 2749 - 2756
  • [30] Modeling of a Continuous Carbonation Reactor for CaCO3 Precipitation
    Tiefenthaler, Johannes
    Mazzotti, Marco
    [J]. FRONTIERS IN CHEMICAL ENGINEERING, 2022, 4