Poster Abstract: Deep Reinforcement Learning-based Resource Allocation in Vehicular Fog Computing

被引:2
|
作者
Lee, Seung-seob [1 ]
Lee, Sukyoung [1 ]
机构
[1] Yonsei Univ, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
10.1109/infcomw.2019.8845095
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In vehicular fog computing (VFC), it is challenging to design efficient resource allocation (RA) to satisfy the latency requirements of emerging vehicular applications due to the limited network resources and dynamically changing resource availability. In this paper, we formulate the problem of VFC resource allocation (VFC-RA) and utilize reinforcement learning (RL) to predict the availability of VFC resources and service demands. We also propose a training method to decompose the high dimensional continuous action space into a three-dimensional grid so that the efficiency of training deep neural networks (DNNs) can be improved.
引用
收藏
页码:1029 / 1030
页数:2
相关论文
共 50 条
  • [21] Resource allocation of fog radio access network based on deep reinforcement learning
    Tan, Jingru
    Guan, Wenbo
    [J]. ENGINEERING REPORTS, 2022, 4 (05)
  • [22] Resource Allocation Based on Deep Reinforcement Learning in IoT Edge Computing
    Xiong, Xiong
    Zheng, Kan
    Lei, Lei
    Hou, Lu
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (06) : 1133 - 1146
  • [23] Spectral Clustering and Deep Reinforcement Learning-Based Dynamic Resource Allocation in SM-MIMO Vehicular System
    Mohamed, Abeer
    Bai, Zhiquan
    Pang, Ke
    Zhao, Jinqiu
    Xu, Hongji
    Zhang, Lei
    Ji, Yuxiong
    Kwak, Kyungsup
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (05) : 3777 - 3792
  • [24] Resource Provisioning in Fog Computing through Deep Reinforcement Learning
    Santos, Jose
    Wauters, Tim
    Volckaert, Bruno
    De Turck, Filip
    [J]. 2021 IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT (IM 2021), 2021, : 431 - 437
  • [25] Deep Reinforcement Learning-Based Smart Grid Resource Allocation System
    Lang, Qiong
    Zhu, La Ba Dun
    Ren, Mi Ma Ci
    Zhang, Rui
    Wu, Yinghen
    He, Wenting
    Li, Mingjia
    [J]. 2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 703 - 707
  • [26] DRJLRA: A Deep Reinforcement Learning-Based Joint Load and Resource Allocation in Heterogeneous Coded Distributed Computing
    Heidarpour, Ali Reza
    Ardakani, Maryam Haghighi
    Ardakani, Masoud
    Tellambura, Chintha
    [J]. 2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [27] Fast Adaptive Task Offloading and Resource Allocation via Multiagent Reinforcement Learning in Heterogeneous Vehicular Fog Computing
    Gao, Zhen
    Yang, Lei
    Dai, Yu
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (08) : 6818 - 6835
  • [28] Asynchronous Deep Reinforcement Learning for Collaborative Task Computing and On-Demand Resource Allocation in Vehicular Edge Computing
    Liu L.
    Feng J.
    Mu X.
    Pei Q.
    Lan D.
    Xiao M.
    [J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (12) : 15513 - 15526
  • [29] A Machine-Learning Based Time Constrained Resource Allocation Scheme for Vehicular Fog Computing
    Xiaosha Chen
    Supeng Leng
    Ke Zhang
    Kai Xiong
    [J]. China Communications, 2019, 16 (11) : 29 - 41
  • [30] A Machine-Learning Based Time Constrained Resource Allocation Scheme for Vehicular Fog Computing
    Chen, Xiaosha
    Leng, Supeng
    Zhang, Ke
    Xiong, Kai
    [J]. CHINA COMMUNICATIONS, 2019, 16 (11) : 29 - 41