Facile and robust construction of a 3D-hierarchical NaNbO3-nanorod/ZnIn2S4 heterojunction towards ultra-high photocatalytic H2 production

被引:20
|
作者
Zhang, Juhua
Gu, Huajun
Wang, Xinglin
Zhang, Huihui
Li, Lingfeng
Wang, Xiaohao
Dai, Wei-Lin [1 ]
机构
[1] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
ZNIN2S4; MICROSPHERES; SOLAR-ENERGY; EFFICIENT; NANBO3; NANOCOMPOSITES; DEGRADATION; REDUCTION; EVOLUTION; CO2; HETEROSTRUCTURES;
D O I
10.1039/d2cy00115b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is imperative but still challenging to develop heterojunction photocatalysts for efficient interfacial charge carrier separation in photocatalytic hydrogen evolution (PHE) reactions. Encouragingly, in this work, we constructed a 3D hierarchical NaNbO3/ZnIn2S4 heterojunction for the first time by in situ coating thin-layered ZnIn2S4 nanosheets on the external surface of NaNbO3 nanorods via a facile solvothermal method. A striking hydrogen evolution rate of 30.04 mmol h(-1) g(-1) was attained using NaNbO3/ZnIn2S4 as a photocatalyst under simulated sunlight irradiation, which is almost 110-fold and 11-fold higher than that of bare NaNbO3 and ZnIn2S4, respectively, and is the highest value obtained thus far among reported NaNbO3 and ZnIn2S4-based catalysts. This extraordinary improvement in the photocatalytic performance is mainly due to two reasons. Firstly, the difference in conduction band position and the intimate contact between NaNbO3 and ZnIn2S4 facilitate interfacial charge separation from NaNbO3 to ZnIn2S4. Secondly, the unique hierarchical heterostructure not only affords a more diffused surface area but also serves as a 3D supporting platform to generate more fruitful proton reduction sites, realizing a maximized photocatalytic activity. Additionally, density functional theory (DFT) calculations on the heterojunction further revealed the electron density distribution at the heterointerface and a close-to-neutral Gibbs free energy of hydrogen adsorption (Delta G(H)). Hence, the present work can provide fresh guidance for the synthesis and development of more NaNbO3 and ZnIn2S4-based composite photocatalysts for related applications in photocatalysis.
引用
收藏
页码:2346 / 2359
页数:14
相关论文
共 50 条
  • [31] Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution
    Zuo, Gancheng
    Wang, Yuting
    Teo, Wei Liang
    Xie, Aming
    Guo, Yang
    Dai, Yuxuan
    Zhou, Weiqiang
    Jana, Deblin
    Xian, Qiming
    Dong, Wei
    Zhao, Yanli
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (28) : 11287 - 11292
  • [32] Rational design of MoS2/g-C3N4/ZnIn2S4 hierarchical heterostructures with efficient charge transfer for significantly enhanced photocatalytic H2 production
    Ni, Tianjun
    Yang, Zhibin
    Cao, Yafei
    Lv, Hua
    Liu, Yumin
    CERAMICS INTERNATIONAL, 2021, 47 (16) : 22985 - 22993
  • [33] In-situ Construction of 2D/3D ZnIn2S4/TiO2 with Enhanced Photocatalytic Performance
    Liu, Huan
    Li, Li
    Li, Ping
    Zhang, Guangzhi
    Xu, Xun
    Zhang, Hao
    Qiu, Lingfang
    Qi, Hui
    Duo, Shuwang
    ACTA CHIMICA SINICA, 2021, 79 (10) : 1293 - 1301
  • [34] Metal-Organic Framework Templated Z-Scheme ZnIn2S4/Bi2S3 Hierarchical Heterojunction for Photocatalytic H2O2 Production from Wastewater
    Dai, Dingliang
    Qiu, Jianhao
    Xia, Guanglu
    Tang, Yong
    Liu, Qiying
    Li, Yixin
    Fang, Biyao
    Yao, Jianfeng
    SMALL, 2024, 20 (38)
  • [35] Facile construction of g-C3N4/ZnIn2S4 nanocomposites for enhance Cr(VI) photocatalytic reduction
    Yang, Liqin
    Zhao, Jun
    Wang, Zheng
    Wang, Lili
    Zhao, Zhiju
    Li, Siyu
    Li, Guanghua
    Cai, Zhenyu
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 276
  • [36] Cooperative S-S coupling and H2 production from photocatalytic dehydrogenation of thiols over ReSe2/ZnIn2S4/ZnIn 2 S 4 heterostructure
    Yang, Xin
    Jin, Yanchao
    Ke, Sunzai
    Li, Mengqing
    Yang, Xuhui
    Shen, Lijuan
    Yang, Min-Quan
    CHEMICAL ENGINEERING JOURNAL, 2024, 499
  • [37] Construction of core–shell FeS2@ZnIn2S4 hollow hierarchical structure S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production
    Chen K.
    Shi Y.
    Shu P.
    Luo Z.
    Shi W.
    Guo F.
    Chemical Engineering Journal, 2023, 454
  • [38] 2D NiCo2S4 decorated on ZnIn2S4 formed S-scheme heterojunction for photocatalytic hydrogen production
    Li, Zezhong
    Xu, Jing
    Liu, Zhenlu
    Liu, Xinyu
    Xu, Shengming
    Ma, Yue
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (09) : 3466 - 3477
  • [39] Effect of active S of ZnIn2S4 on the photocatalytic H2 production by water splitting under visible light irradiation
    Li, Xiaolang
    Fu, Haitao
    Yang, Xiaohong
    Xiong, Shixian
    An, Xizhong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 395 - 405
  • [40] Integrating Co3O4 with ZnIn2S4 p-n heterojunction for efficient photocatalytic hydrogen production
    Li, Xiaohong
    Li, Youji
    Zhu, Pengfei
    Jin, Zhiliang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (11) : 15589 - 15601