NPSAT1 parameter estimation using unscented Kalman filtering

被引:0
|
作者
Sekhavat, Pooya [1 ,2 ]
Gong, Qi [1 ,2 ]
Ross, I. Michael [1 ,2 ]
机构
[1] USN, Postgrad Sch, Dept Mech & Astro Eng, Monterey, CA 93943 USA
[2] Univ Texas San Antonio, Dept Elect & Comp Engn, San Antonio, TX 78249 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
NPSAT1 is a small satellite being built at the Naval Postgraduate School and scheduled to launch in 2007. It primarily employs magnetic sensing and actuation for attitude control. The nature of the in-house fabrication and assembly of the spacecraft requires reliable computational estimation of the difficult-to-measure parameters of the end-product. The inherent nonlinear dynamics of the system makes the observer design a challenging problem. This paper presents the successful implementation of the Unscented Kalman Filter (UKF) for the spacecraft parameter estimation. Since a three-axis magnetometer is the only sensor onboard, the UKF algorithm also estimates the system orientation and angular velocity. The unit quaternion constraint is enforced by treating the norm of the quaternions as a dummy measurement. Simulations and,ground test experimental results show the superior performance of the UKF in spacecraft dual state-parameter estimation.
引用
收藏
页码:5365 / +
页数:2
相关论文
共 50 条
  • [41] Unscented Kalman Filtering on Riemannian Manifolds
    Søren Hauberg
    François Lauze
    Kim Steenstrup Pedersen
    [J]. Journal of Mathematical Imaging and Vision, 2013, 46 : 103 - 120
  • [42] Sequence unscented Kalman filtering algorithm
    Li, Hui-ping
    Xu, De-min
    jun, Jiang Li
    Zhang, Fu-bin
    [J]. ICIEA 2008: 3RD IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, PROCEEDINGS, VOLS 1-3, 2008, : 1374 - 1378
  • [43] Extended and Unscented Kalman filters for parameter estimation of an autonomous underwater vehicle
    Sabet, Mohammad Taghi
    Sarhadi, Pouria
    Zarini, Mostafa
    [J]. OCEAN ENGINEERING, 2014, 91 : 329 - 339
  • [44] Sensorless vector control of an IPMSM using Unscented Kalman Filtering
    Ndjana, H. J. Nanga
    Lautier, Ph.
    [J]. 2006 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-7, 2006, : 2242 - +
  • [45] FILTERING METEOROID FLIGHTS USING MULTIPLE UNSCENTED KALMAN FILTERS
    Sansom, E. K.
    Bland, P. A.
    Rutten, M. G.
    Paxman, J.
    Towner, M. C.
    [J]. ASTRONOMICAL JOURNAL, 2016, 152 (05):
  • [46] An Adaptive Unscented Kalman Filtering Approach using Selective Scaling
    Kim, Jaehoon
    Kiss, Balint
    Lee, Dongik
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 784 - 789
  • [47] Unscented Kalman Filtering on Lie Groups
    Brossard, Martin
    Bonnabel, Silvere
    Condomines, Jean-Philippe
    [J]. 2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 2485 - 2491
  • [48] Unscented Kalman Filtering on Riemannian Manifolds
    Hauberg, Soren
    Lauze, Francois
    Pedersen, Kim Steenstrup
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2013, 46 (01) : 103 - 120
  • [49] Extended and Unscented Kalman filters for parameter estimation of a hydrodynamic model of vessel
    Yuan, Ye
    Fu, Guiyuan
    Zhang, Weidong
    [J]. PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 2051 - 2056
  • [50] A Bayesian Adaptive Unscented Kalman Filter for Aircraft Parameter and Noise Estimation
    Ding, Di
    He, Kai F.
    Qian, Wei Q.
    [J]. JOURNAL OF SENSORS, 2021, 2021