Translocation of phospholipids is facilitated by a subset of membrane-spanning proteins of the bacterial cytoplasmic membrane

被引:72
|
作者
Kol, MA [1 ]
van Dalen, A [1 ]
de Kroon, AIPM [1 ]
de Kruijff, B [1 ]
机构
[1] Univ Utrecht, Dept Biochem Membranes, Ctr Biomembranes & Lipid Enzymol, Inst Biomembranes, NL-3584 CH Utrecht, Netherlands
关键词
D O I
10.1074/jbc.M301875200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mechanism by which phospholipids are transported across biogenic membranes, such as the bacterial cytoplasmic membrane, is unknown. We hypothesized that this process is mediated by the presence of the membrane-spanning segments of inner membrane proteins, rather than by dedicated flippases. In support of the hypothesis, it was demonstrated that transmembrane alpha-helical peptides, mimicking the membrane-spanning segments, mediate flop of 2-6-(7-nitro-2,1,3-benzoxadiazol-4-yl) aminocaproyl (C-6-NBD)-phospholipids (Kol, M. A., de Kroon, A. I., Rijkers, D. T., Killian, J. A., and de Kruijff, B. (2001) Biochemistry 40, 10500-10506). Here the dithionite reduction assay was used to measure transbilayer equilibration of C-6-NBD-phospholipids in proteoliposomes, composed of Escherichia coli phospholipids and a subset of bacterial membrane proteins. It is shown that two well characterized integral proteins of the bacterial cytoplasmic membrane, leader peptidase and the potassium channel KcsA, induce phospholipid translocation, most likely by their transmembrane domains. In contrast, the ATP-binding cassette transporter from the E. coli inner membrane MsbA, a putative lipid flippase, did not mediate phospholipid translocation, irrespective of the presence of ATP. OmpT, an outer membrane protein from E. coli, did not facilitate flop either, demonstrating specificity of protein-mediated phospholipid translocation. The results are discussed in the light of phospholipid transport across the E. coli inner membrane.
引用
收藏
页码:24586 / 24593
页数:8
相关论文
共 50 条
  • [31] CYTOPLASMIC EXTENSIONS OF CFTR MEMBRANE-SPANNING HELICES STRONGLY INFLUENCE SINGLE-CHANNEL PROPERTIES
    Nesbitt, K.
    Aleksandrov, A. A.
    Proctor, E.
    Dokholyan, N.
    Riordan, J. R.
    PEDIATRIC PULMONOLOGY, 2012, 47 : 245 - 245
  • [32] CONSERVED POSITIONING OF PROLINE RESIDUES IN MEMBRANE-SPANNING HELICES OF ION-CHANNEL PROTEINS
    WOOLFSON, DN
    MORTISHIRESMITH, RJ
    WILLIAMS, DH
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1991, 175 (03) : 733 - 737
  • [33] Analysis of the role of the membrane-spanning and cytoplasmic tail domains of herpes simplex virus type 1 glycoprotein D in membrane fusion
    Browne, H
    Bruun, B
    Whiteley, A
    Minson, T
    JOURNAL OF GENERAL VIROLOGY, 2003, 84 : 1085 - 1089
  • [35] Slow fusion of liposomes composed of membrane-spanning lipids
    Elferink, M. G. L.
    Van Breemen, J.
    Konings, W. N.
    Driessen, A. J. M.
    Chemistry and Physics of Lipids, 88 (01):
  • [36] PREDICTIVE ANALYSIS OF AXIAL AMPHIPATHY - ITS APPLICATION TO STRUCTURAL STUDIES OF MEMBRANE-SPANNING PROTEINS
    GONZALEZ, ASS
    MARTINEZCAYUELA, M
    RODRIGO, HR
    BIOCHEMICAL SOCIETY TRANSACTIONS, 1989, 17 (06) : 995 - 996
  • [37] Slow fusion of liposomes composed of membrane-spanning lipids
    Elferink, MGL
    vanBreemen, J
    Konings, WN
    Driessen, AJM
    Wilschut, J
    CHEMISTRY AND PHYSICS OF LIPIDS, 1997, 88 (01) : 37 - 43
  • [38] LATERAL DIFFUSION OF MEMBRANE-SPANNING AND GLYCOSYLPHOSPHATIDYLINOSITOL-LINKED PROTEINS - TOWARD ESTABLISHING RULES GOVERNING THE LATERAL MOBILITY OF MEMBRANE-PROTEINS
    ZHANG, F
    CRISE, B
    SU, B
    HOU, Y
    ROSE, JK
    BOTHWELL, A
    JACOBSON, K
    JOURNAL OF CELL BIOLOGY, 1991, 115 (01): : 75 - 84
  • [39] Membrane-Spanning Sequences in Endoplasmic Reticulum Proteins Promote Phospholipid Flip-Flop
    Nakao, Hiroyuki
    Ikeda, Keisuke
    Ishihama, Yasushi
    Nakano, Minoru
    BIOPHYSICAL JOURNAL, 2016, 110 (12) : 2689 - 2697
  • [40] The differential treatment of model misfolded membrane-spanning proteins by components of ER quality control
    Kincaid, MM
    Cooper, AA
    MOLECULAR BIOLOGY OF THE CELL, 2004, 15 : 345A - 345A