Groups whose nonlinear irreducible characters separate element orders or conjugacy class sizes

被引:0
|
作者
Bianchi, Mariagrazia [1 ]
Chillag, David [2 ]
Pacifici, Emanuele [1 ]
机构
[1] Univ Milan, Dipartimento Matemat Federigo Enriques, I-20133 Milan, Italy
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
group; character;
D O I
10.1007/s00013-007-2394-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A class function phi on a finite group G is said to be an order separator if, for every x and y in G\{1}, phi(x) = phi(y) is equivalent to x and y being of the same order. Similarly, W is said to be a class-size separator if, for every x and y in G\{1}, phi(x)=phi(y) is equivalent to vertical bar C-G(x)vertical bar = vertical bar C-G(y)vertical bar. In this paper, finite groups whose nonlinear irreducible complex characters are all order separators (respectively, class-size separators) are classified. In fact, a more general setting is studied, from which these classifications follow. This analysis has some connections with the study of finite groups such that every two elements lying in distinct conjugacy classes have distinct orders, or, respectively, in which disctinct conjugacy classes have distinct sizes.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [41] The Influence of Conjugacy Class Sizes on the Structure of Finite Groups
    Chen, Ruifang
    Zhao, Xianhe
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (04): : 719 - 725
  • [42] On the number of centralizers and conjugacy class sizes in finite groups
    Pezzott, Julio C. M.
    [J]. COMMUNICATIONS IN ALGEBRA, 2024, 52 (08) : 3542 - 3553
  • [43] On real conjugacy class sizes and the structure of finite groups
    Chen, Ruifang
    Zhao, Xianhe
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2018, 61 (03): : 273 - 278
  • [44] Frobenius Groups with Almost Distinct Conjugacy Class Sizes
    S. M. Robati
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1711 - 1715
  • [45] Characterization of some linear groups by their conjugacy class sizes
    Chen, Yanheng
    Chen, Guiyun
    Feng, Yuming
    Onasanya, B.O.
    [J]. Italian Journal of Pure and Applied Mathematics, 2020, 43 : 14 - 24
  • [46] CONJUGACY CLASS SIZES OF SUBGROUPS AND THE STRUCTURE OF FINITE GROUPS
    Han, Zhangjia
    Shi, Huaguo
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (33): : 285 - 292
  • [47] ABOUT PRODUCTS OF IRREDUCIBLE CHARACTERS AND PRODUCTS OF CONJUGACY CLASSES IN FINITE-GROUPS
    ARAD, Z
    FISMAN, E
    [J]. JOURNAL OF ALGEBRA, 1988, 114 (02) : 466 - 476
  • [48] ON FINITE-GROUPS ALL OF WHOSE IRREDUCIBLE COMPLEX CHARACTERS ARE PRIMITIVE
    HEKSTER, NS
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1985, 88 (01): : 63 - 76
  • [49] Characterizing rational groups whose irreducible characters vanish only on involutions
    Jafari, Saeid
    Sharifi, Hesam
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2015, 39 (03) : 408 - 411
  • [50] Groups whose real irreducible characters have degrees coprime to p
    Isaacs, I. M.
    Navarro, Gabriel
    [J]. JOURNAL OF ALGEBRA, 2012, 356 (01) : 195 - 206