BindsNET: A Machine Learning-Oriented Spiking Neural Networks Library in Python']Python

被引:168
|
作者
Hazan, Hananel [1 ]
Saunders, Daniel J. [1 ]
Khan, Hassaan [1 ]
Patel, Devdhar [1 ]
Sanghavi, Darpan T. [1 ]
Siegelmann, Hava T. [1 ]
Kozma, Robert [1 ]
机构
[1] Univ Massachusetts, Coll Comp & Informat Sci, Biol Inspired Neural & Dynam Syst Lab, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
GPU-computing; spiking Network; PyTorch; machine learning; !text type='python']python[!/text] (programming language); reinforcement learning (RL); NEURONS; TOOL;
D O I
10.3389/fninf.2018.00089
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of spiking neural network simulation software is a critical component enabling the modeling of neural systems and the development of biologically inspired algorithms. Existing software frameworks support a wide range of neural functionality, software abstraction levels, and hardware devices, yet are typically not suitable for rapid prototyping or application to problems in the domain of machine learning. In this paper, we describe a new Python package for the simulation of spiking neural networks, specifically geared toward machine learning and reinforcement learning. Our software, called BindsNET(1), enables rapid building and simulation of spiking networks and features user-friendly, concise syntax. BindsNET is built on the PyTorch deep neural networks library, facilitating the implementation of spiking neural networks on fast CPU and GPU computational platforms. Moreover, the BindsNET framework can be adjusted to utilize other existing computing and hardware backends; e.g., TensorFlow and SpiNNaker. We provide an interface with the OpenAl gym library, allowing for training and evaluation of spiking networks on reinforcement learning environments. We argue that this package facilitates the use of spiking networks for large-scale machine learning problems and show some simple examples by using BindsNET in practice.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Ichor: A Python']Python library for computational chemistry data management and machine learning force field development
    Manchev, Yulian T.
    Burn, Matthew J.
    Popelier, Paul L. A.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2024, 45 (32) : 2912 - 2928
  • [32] SPAM: Simplifying Python']Python for Approaching Machine Learning
    Rosiene, Joel A.
    Rosiene, Carolyn Pe
    2020 IEEE FRONTIERS IN EDUCATION CONFERENCE (FIE 2020), 2020,
  • [33] River: machine learning for streaming data in Python']Python
    Montiel, Jacob
    Halford, Max
    Mastelini, Saulo Martiello
    Bolmier, Geoffrey
    Sourty, Raphael
    Vaysse, Robin
    Zouitine, Adil
    Gomes, Heitor Murilo
    Read, Jesse
    Abdessalem, Talel
    Bifet, Albert
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [34] secml: Secure and explainable machine learning in Python']Python
    Pintor, Maura
    Demetrio, Luca
    Sotgiu, Angelo
    Melis, Marco
    Demontis, Ambra
    Biggio, Battista
    SOFTWAREX, 2022, 18
  • [35] SSLearn: A Semi-Supervised Learning library for Python']Python
    Garrido-Labrador, Jose L.
    Maudes-Raedo, Jesus M.
    Rodriguez, Juan J.
    Garcia-Osorio, Cesar I.
    SOFTWAREX, 2025, 29
  • [36] fuzzy-rough-learn 0.1: A Python']Python Library for Machine Learning with Fuzzy Rough Sets
    Lenz, Oliver Urs
    Peralta, Daniel
    Cornelis, Chris
    ROUGH SETS, IJCRS 2020, 2020, 12179 : 491 - 499
  • [37] Machine learning, deep learning and Python']Python language in field of geology
    Zhou YongZhang
    Wang Jun
    Zuo RenGuang
    Xiao Fan
    Shen WenJie
    Wang ShuGong
    ACTA PETROLOGICA SINICA, 2018, 34 (11) : 3173 - 3178
  • [38] pystablemotifs: Python']Python library for attractor identification and control in Boolean networks
    Rozum, Jordan C.
    Deritei, David
    Park, Kyu Hyong
    Zanudo, Jorge Gomez Tejeda
    Albert, Reka
    BIOINFORMATICS, 2022, 38 (05) : 1465 - 1466
  • [39] Graphein - a Python']Python Library for Geometric Deep Learning and Network Analysis on Biomolecular Structures and Interaction Networks
    Jamasb, Arian R.
    Vinas, Ramon
    Ma, Eric J.
    Harris, Charlie
    Huang, Kexin
    Hall, Dominic
    Lio, Pietro
    Blundell, Tom L.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [40] Highdicom: a Python']Python Library for Standardized Encoding of Image Annotations and Machine Learning Model Outputs in Pathology and Radiology
    Bridge, Christopher P.
    Gorman, Chris
    Pieper, Steven
    Doyle, Sean W.
    Lennerz, Jochen K.
    Kalpathy-Cramer, Jayashree
    Clunie, David A.
    Fedorov, Andriy Y.
    Herrmann, Markus D.
    JOURNAL OF DIGITAL IMAGING, 2022, 35 (06) : 1719 - 1737