Symplectic fillability of toric contact manifolds

被引:1
|
作者
Marinkovic, Aleksandra [1 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Dept Math, Ctr Math Anal Geometry & Dynam Syst, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
Contact manifold; Toric action; Symplectic fillability; CONTACTOMORPHISM GROUPS; MAXIMAL TORI;
D O I
10.1007/s10998-016-0147-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
According to Lerman, compact connected toric contact 3-manifolds with a non-free toric action whose moment cone spans an angle greater than are overtwisted, thus non-fillable. In contrast, we show that all compact connected toric contact manifolds in dimension greater than three are weakly symplectically fillable and many of them are strongly symplectically fillable. The proof is based on Lerman's classification of toric contact manifolds and on our observation that the only contact manifolds in higher dimensions that admit free toric action are the cosphere bundle of and , with the unique contact structure.
引用
收藏
页码:16 / 26
页数:11
相关论文
共 50 条
  • [31] The fundamental groups of contact toric manifolds
    Li, Hui
    JOURNAL OF SYMPLECTIC GEOMETRY, 2020, 18 (03) : 815 - 818
  • [32] ON THE GEOMETRY OF THE CONTACT MANIFOLDS AND OF THE EXACT SYMPLECTIC-MANIFOLDS
    LICHNEROWICZ, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 290 (20): : 963 - 967
  • [33] The tropical momentum map: a classification of toric log symplectic manifolds
    Gualtieri, Marco
    Li, Songhao
    Pelayo, Alvaro
    Ratiu, Tudor S.
    MATHEMATISCHE ANNALEN, 2017, 367 (3-4) : 1217 - 1258
  • [34] The tropical momentum map: a classification of toric log symplectic manifolds
    Marco Gualtieri
    Songhao Li
    Álvaro Pelayo
    Tudor S. Ratiu
    Mathematische Annalen, 2017, 367 : 1217 - 1258
  • [35] Toric structures on near-symplectic 4-manifolds
    Gay, David T.
    Symington, Margaret
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2009, 11 (03) : 487 - 520
  • [36] On displaceability of pre-Lagrangian toric fibers in contact toric manifolds
    Marinkovic, A.
    Pabiniak, M.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (14)
  • [37] HOMOGENEOUS CONTACT COMPACT MANIFOLDS AND HOMOGENEOUS SYMPLECTIC-MANIFOLDS
    MIRANDA, AD
    REVENTOS, A
    BULLETIN DES SCIENCES MATHEMATIQUES, 1982, 106 (04): : 337 - 350
  • [38] Bohr-Sommerfeld quantization of b-symplectic toric manifolds
    Mir, Pau
    Miranda, Eva
    Weitsman, Jonathan
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2023, 19 (04) : 2169 - 2194
  • [39] Kostant Prequantization of Symplectic Manifolds with Contact Singularities
    D. B. Zot’ev
    Mathematical Notes, 2019, 105 : 846 - 863
  • [40] Almost contact metric submersions and symplectic manifolds
    Batubenge, Augustin
    Tshikuna-Matamba, Tshikunguila
    TURKISH JOURNAL OF MATHEMATICS, 2014, 38 (04) : 778 - 788