Symplectic fillability of toric contact manifolds

被引:1
|
作者
Marinkovic, Aleksandra [1 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Dept Math, Ctr Math Anal Geometry & Dynam Syst, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
Contact manifold; Toric action; Symplectic fillability; CONTACTOMORPHISM GROUPS; MAXIMAL TORI;
D O I
10.1007/s10998-016-0147-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
According to Lerman, compact connected toric contact 3-manifolds with a non-free toric action whose moment cone spans an angle greater than are overtwisted, thus non-fillable. In contrast, we show that all compact connected toric contact manifolds in dimension greater than three are weakly symplectically fillable and many of them are strongly symplectically fillable. The proof is based on Lerman's classification of toric contact manifolds and on our observation that the only contact manifolds in higher dimensions that admit free toric action are the cosphere bundle of and , with the unique contact structure.
引用
收藏
页码:16 / 26
页数:11
相关论文
共 50 条
  • [1] Symplectic fillability of toric contact manifolds
    Aleksandra Marinković
    Periodica Mathematica Hungarica, 2016, 73 : 16 - 26
  • [2] Symplectic toric manifolds
    da Silva, AC
    SYMPLECTIC GEOMETRY OF INTEGRABLE HAMILTONIAN SYSTEMS, 2003, : 85 - +
  • [3] Stein fillability and the realization of contact manifolds
    Hill, CD
    Nacinovich, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) : 1843 - 1850
  • [4] Strong symplectic fillability of contact torus bundles
    Ding, Fan
    Li, Youlin
    GEOMETRIAE DEDICATA, 2018, 195 (01) : 403 - 415
  • [5] The topology of toric symplectic manifolds
    McDuff, Dusa
    GEOMETRY & TOPOLOGY, 2011, 15 (01) : 145 - 190
  • [6] Strong symplectic fillability of contact torus bundles
    Fan Ding
    Youlin Li
    Geometriae Dedicata, 2018, 195 : 403 - 415
  • [7] A note on Stein fillability of circle bundles over symplectic manifolds
    Oba, Takahiro
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2025, 57 (02) : 395 - 403
  • [8] Pseudotoric structures on toric symplectic manifolds
    Belyov, S. A.
    Tyurin, N. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 175 (02) : 571 - 579
  • [9] Pseudotoric structures on toric symplectic manifolds
    S. A. Belyov
    N. A. Tyurin
    Theoretical and Mathematical Physics, 2013, 175 : 571 - 579
  • [10] Weak and strong fillability of higher dimensional contact manifolds
    Patrick Massot
    Klaus Niederkrüger
    Chris Wendl
    Inventiones mathematicae, 2013, 192 : 287 - 373