The fractal behaviour of triangular refined/derefined meshes

被引:0
|
作者
DelaHoz, AP
机构
来源
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING | 1996年 / 12卷 / 05期
关键词
mesh generation; adaptivity; iterated fractal systems;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the paper the author presents a novel point of view for the refinement and derefinement algorithms of triangular nested meshes using fractal concepts and iterated function systems (IFS). The fractal behaviour can be understood in the sense that these meshes feature a remarkable amplifying invariance under changes of magnification. Here we compare the meshes obtained by the combination of these algorithms with those presented by Bova and Carey (1992). Although both of the meshes are very similar, the current algorithms automatically build and manage sequences of nested irregular discretizations of the domain. The author illustrates here how the application of IFS families is equivalent to the use of an adaptive strategy that combines the refinement procedure with the derefinement one.
引用
收藏
页码:295 / 302
页数:8
相关论文
共 50 条
  • [31] Approximating uniform triangular meshes in polygons
    Aurenhammer, F
    Katoh, N
    Kojima, H
    Ohsaki, M
    Xu, YF
    THEORETICAL COMPUTER SCIENCE, 2002, 289 (02) : 879 - 895
  • [32] Parallel generation of triangular and quadrilateral meshes
    Lämmer, L
    Burghardt, M
    ADVANCES IN ENGINEERING SOFTWARE, 2000, 31 (12) : 929 - 936
  • [33] Constructing triangular meshes of minimal area
    Nanyang Technological University, Singapore
    Comput.-Aided Des. Appl., 2008, 1-4 (508-518):
  • [34] Dual Laplacian morphing for triangular meshes
    Hu, Jianwei
    Liu, Ligang
    Wang, Guozhao
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2007, 18 (4-5) : 271 - 277
  • [35] TRIANGULAR MESHES FOR REGIONS OF COMPLICATED SHAPE
    JOE, B
    SIMPSON, RB
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1986, 23 (05) : 751 - 778
  • [36] Navigation Queries from Triangular Meshes
    Kallmann, Marcelo
    MOTION IN GAMES, 2010, 6459 : 230 - 241
  • [37] Adaptive kernel for triangular meshes smoothing
    Fouad El Ouafdi, Ahmed
    El Houari, Hassan
    2015 INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV), 2015,
  • [38] DELAUNAY TRIANGULAR MESHES IN CONVEX POLYGONS
    JOE, B
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (02): : 514 - 539
  • [39] Detection of phase singularities in triangular meshes
    Rantner, L. J.
    Wieser, L.
    Stuelinger, M. C.
    Hintringer, F.
    Tilg, B.
    Fischer, G.
    METHODS OF INFORMATION IN MEDICINE, 2007, 46 (06) : 646 - 654
  • [40] Does contraction preserve triangular meshes?
    Ciarlet, P
    Lamour, F
    NUMERICAL ALGORITHMS, 1996, 13 (3-4) : 201 - 223