Sequences of irreducible polynomials over odd prime fields via elliptic curve endomorphisms

被引:2
|
作者
Ugolini, S. [1 ]
机构
[1] Univ Trent, Dipartimento Matemat, I-38050 Trento, Italy
关键词
Irreducible polynomial iterative constructions; Finite fields; Elliptic curves;
D O I
10.1016/j.jnt.2014.12.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Text. In this paper we present and analyze a construction of irreducible polynomials over odd prime fields via the transforms which take any polynomial f is an element of F-p[x] of positive degree n to (n/k)n . f (k(x + x(-1))), for some specific values of the odd prime p and k is an element of F-p. Video. For a video summary of this paper, please visit http://youtu.be/Lmw5m_c-i8s. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:21 / 37
页数:17
相关论文
共 50 条
  • [31] DICKSON POLYNOMIALS AND IRREDUCIBLE POLYNOMIALS OVER FINITE-FIELDS
    GAO, SH
    MULLEN, GL
    JOURNAL OF NUMBER THEORY, 1994, 49 (01) : 118 - 132
  • [32] A study of irreducible polynomials over henselian valued fields via distinguished pairs
    Aghigh, K.
    Bishnoi, A.
    Kumar, S.
    Khanduja, S. K.
    VALUATION THEORY IN INTERACTION, 2014, : 1 - +
  • [33] One Variable Polynomial Division Approach for Elliptic Curve Arithmetic over Prime Fields
    Pote, Santoshi
    Sule, Virendra
    Lande, B. K.
    2016 INTERNATIONAL CONFERENCE ON COMPUTING, ANALYTICS AND SECURITY TRENDS (CAST), 2016, : 267 - 270
  • [34] New composite operations and precomputation scheme for elliptic curve cryptosystems over prime fields
    Longa, Patrick
    Miri, Ali
    PUBLIC KEY CRYPTOGRAPHY - PKC 2008, 2008, 4939 : 229 - +
  • [35] A compact FPGA-based architecture for elliptic curve cryptography over prime fields
    Vliegen, Jo
    Mentens, Nele
    Genoe, Jan
    Braeken, An
    Kubera, Serge
    Touhafi, Abdellah
    Verbauwhede, Ingrid
    21ST IEEE INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS, 2010,
  • [36] High-performance elliptic curve cryptography processor over NIST prime fields
    Hossain, Md Selim
    Kong, Yinan
    Saeedi, Ehsan
    Vayalil, Niras C.
    IET COMPUTERS AND DIGITAL TECHNIQUES, 2017, 11 (01): : 33 - 42
  • [37] Generating series for irreducible polynomials over finite fields
    Bodin, Arnaud
    FINITE FIELDS AND THEIR APPLICATIONS, 2010, 16 (02) : 116 - 125
  • [38] A correspondence of certain irreducible polynomials over finite fields
    Kim, Kitae
    Yie, Ikkwon
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (02) : 384 - 395
  • [39] Recursive constructions of irreducible polynomials over finite fields
    Abrahamyan, Sergey
    Alizadeh, Mahmood
    Kyureghyan, Melsik K.
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (04) : 738 - 745
  • [40] Fast construction of irreducible polynomials over finite fields
    Jean-Marc Couveignes
    Reynald Lercier
    Israel Journal of Mathematics, 2013, 194 : 77 - 105