Gradient estimates for some evolution equations on complete smooth metric measure spaces

被引:1
|
作者
Nguyen Thac Dung [1 ,2 ]
Kieu Thi Thuy Linh [3 ]
Ninh Van Thu [1 ]
机构
[1] Hanoi Univ Sci VNU, Fac Math Mech Informat, 334 Nguyen Trai Rd, Hanoi, Vietnam
[2] THANG Long Univ, Thang Long Inst Math & Appl Sci TIMAS, Hanoi, Vietnam
[3] Natl Univ Civil Engn, Fac Informat Technol, 55 Giai Phong Rd, Hanoi, Vietnam
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2020年 / 96卷 / 1-2期
关键词
gradient estimates; Bakry-Emery curvature; complete smooth metric measure space; Harnack-type inequalities; Liouville-type theorems; NONLINEAR PARABOLIC EQUATION; HEAT-EQUATION; THEOREM; EXTENSION; KERNEL;
D O I
10.5486/PMD.2020.8248
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following general evolution equation u(t) = Delta(f)u + aulog(alpha)u + bu on a smooth metric measure space (M-n, g, e(-f)dv). We give a local gradient estimate of Souplet-Zhang type for positive smooth solutions of this equation provided that the Bakry-Emery curvature is bounded from below. When f is constant, we investigate the general evolution equation on compact Riemannian manifolds with nonconvex boundary satisfying an interior rolling R-ball condition. We show a gradient estimate of Hamilton type on such manifolds.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条