Evolution of signal processing algorithms using vector based genetic programming

被引:8
|
作者
Holladay, K. L. [1 ]
Robbins, K. A. [1 ]
机构
[1] SW Res Inst, San Antonio, TX 78238 USA
关键词
genetic programming; symbol rate; feature extraction; FIFTH;
D O I
10.1109/ICDSP.2007.4288629
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper demonstrates that FIFTH (TM), a new vector-based genetic programming (GP) language, can automatically derive very effective signal processing algorithms directly from signal data. Using symbol rate estimation as an example, we compare the performance of a standard algorithm against an evolved algorithm. The evolved algorithm uses a novel approach in developing a symbol transition feature vector and achieves an impressive 97.7% overall accuracy in the defined problem domain, far exceeding the performance of the standard algorithm. These results suggest that vector based GP approaches could be useful in developing more expressive features for a large class of signal processing and classification problems.
引用
收藏
页码:503 / +
页数:2
相关论文
共 50 条
  • [21] Evolving blackbox quantum algorithms using genetic programming
    Stadelhofer, Ralf
    Banzhaf, Wolfgang
    Suter, Dieter
    [J]. AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 2008, 22 (03): : 285 - 297
  • [22] Evolving evolutionary algorithms using linear genetic programming
    Oltean, M
    [J]. EVOLUTIONARY COMPUTATION, 2005, 13 (03) : 387 - 410
  • [23] Ultrasound Signal Processing Using the Julia Programming Language
    Medeiros, Johannes D., Jr.
    Costa, Eduardo T.
    [J]. XXVI BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2018, VOL. 2, 2019, 70 (02): : 511 - 515
  • [24] Solving mathematical programming problems using genetic algorithms
    Malasri, S
    Martin, JR
    Medina, RA
    [J]. COMPUTING IN CIVIL ENGINEERING, 1996, : 233 - 239
  • [25] Comparison of a genetic algorithm to grammatical evolution for automated design of genetic programming classification algorithms
    Nyathi, Thambo
    Pillay, Nelishia
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2018, 104 : 213 - 234
  • [26] Accelerating Biomedical Signal Processing Algorithms with Parallel Programming on Graphic Processor Units
    Konstantinidis, Evdokimos I.
    Frantzidis, Christos A.
    Tzimkas, Lazaros
    Pappas, Costas
    Bamidis, Panagiotis D.
    [J]. 2009 9TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS IN BIOMEDICINE, 2009, : 209 - 212
  • [27] Evolution of Fuzzy Classifiers Using Genetic Programming
    Muni, Durga Prasad
    Pal, Nikhil R.
    [J]. FUZZY INFORMATION AND ENGINEERING, 2012, 4 (01) : 29 - 49
  • [28] Automated Design of Genetic Programming Classification Algorithms Using a Genetic Algorithm
    Nyathi, Thambo
    Pillay, Nelishia
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTATION (EVOAPPLICATIONS 2017), PT II, 2017, 10200 : 224 - 239
  • [29] Exploring SLUG: Feature Selection Using Genetic Algorithms and Genetic Programming
    Rodrigues N.M.
    Batista J.E.
    Cava W.L.
    Vanneschi L.
    Silva S.
    [J]. SN Computer Science, 5 (1)
  • [30] Configuration processing of nexorades using genetic algorithms
    Baverel, O.
    Nooshin, H.
    Kuroiwa, Y.
    [J]. Journal of the International Association for Shell and Spatial Structures, 2004, 45 (145): : 99 - 108