Solar Irradiance Forecasting using Multi-layer Cloud Tracking and Numerical Weather Prediction

被引:3
|
作者
Xu, Jin [1 ]
Yoo, Shinjae [2 ]
Yu, Dantong [2 ]
Huang, Dong [3 ]
Heiser, John [3 ]
Kalb, Paul [3 ]
机构
[1] SUNY Stony Brook, Elect & Comp Engn Dept, Stony Brook, NY 11794 USA
[2] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA
[3] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA
关键词
Irradiance forecasting; cloud tracking; cloud detection; TSI; NWP;
D O I
10.1145/2695664.2695812
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The advances in photovoltaic technology make solar energy one of the top three renewable energy sources. However, predicting the variability of solar penetration caused by cloud cover is the biggest hurdle for the effective use of solar energy. Grid operators enforce regulations that require ramp events to be within a certain range, which makes short term forecasting essential. The Total Sky Imager (TSI) is one of the best instruments for accurate short-term irradiance forecasting but is limited to a forecast of approximately five minutes for low altitude clouds, which usually cause large ground irradiance fluctuations. To extend the forecasting horizon to 15 minutes, we propose to incorporate NWP (Numerical Weather Prediction) based weather categories (every 15 minutes) into a short-term irradiance forecasting model. This advanced Support Vector Regression (SVR) is the product of our novel multi-layer cloud image processing pipeline, which can handle complex cloud scenarios. We observe an average of 21% improvement over the baseline model in our systematic validations for 1-15 minute forecasts.
引用
收藏
页码:2225 / 2230
页数:6
相关论文
共 50 条
  • [21] Weather Forecasting Using Ensemble of Spatial-Temporal Attention Network and Multi-Layer Perceptron
    Li, Yuanpeng
    Lang, Junwei
    Ji, Lei
    Zhong, Jiqin
    Wang, Zaiwen
    Guo, Yang
    He, Sailing
    [J]. ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES, 2021, 57 (03) : 533 - 546
  • [22] Short-term Solar Power Forecasting Using XGBoost with Numerical Weather Prediction
    Phan, Quoc-Thang
    Wu, Yuan-Kang
    Quoc-Dung Phan
    [J]. 2021 IEEE INTERNATIONAL FUTURE ENERGY ELECTRONICS CONFERENCE (IFEEC), 2021,
  • [23] Day-ahead Numerical Weather Prediction solar irradiance correction using a clustering method based on weather conditions
    Dou, Weijing
    Wang, Kai
    Shan, Shuo
    Li, Chenxi
    Wang, Yiye
    Zhang, Kanjian
    Wei, Haikun
    Sreeram, Victor
    [J]. APPLIED ENERGY, 2024, 365
  • [24] Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe
    Perez, Richard
    Lorenz, Elke
    Pelland, Sophie
    Beauharnois, Mark
    Van Knowe, Glenn
    Hemker, Karl, Jr.
    Heinemann, Detlev
    Remund, Jan
    Mueller, Stefan C.
    Traunmueller, Wolfgang
    Steinmauer, Gerald
    Pozo, David
    Ruiz-Arias, Jose A.
    Lara-Fanego, Vicente
    Ramirez-Santigosa, Lourdes
    Gaston-Romero, Martin
    Pomares, Luis M.
    [J]. SOLAR ENERGY, 2013, 94 : 305 - 326
  • [25] Probability prediction of solar irradiance in the tropic using ensemble forecasting
    Harada, Daiki
    Moriai, Naoki
    Chinnavornrungsee, Perawut
    Kittisontirak, Songkiate
    Chollacoop, Nuwong
    Songtrai, Sasiwimon
    Sriprapha, Kobsak
    Yoshino, Jun
    Kobayashi, Tomonao
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2023, 62 (SK)
  • [26] Numerical weather prediction using a super-computer for weather forecasting
    [J]. Journal of the Institute of Electrical Engineers of Japan, 2019, 139 (07): : 434 - 437
  • [27] Short Term Solar Irradiance Forecast Using Numerical Weather Prediction (NWP) with Gradient Boost Regression
    Tiwari, Soumya
    Sabzehgar, Reza
    Rasouli, Mohammad
    [J]. 2018 9TH IEEE INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS FOR DISTRIBUTED GENERATION SYSTEMS (PEDG), 2018,
  • [28] Combining solar irradiance measurements, satellite-derived data and a numerical weather prediction model to improve intra-day solar forecasting
    Mazorra Aguiar, L.
    Pereira, B.
    Lauret, P.
    Diaz, F.
    David, M.
    [J]. RENEWABLE ENERGY, 2016, 97 : 599 - 610
  • [29] Solar Irradiance Forecasting in Tropical Weather using an Evolutionary Lean Neural Network
    Foo, Yong Wee
    Goh, Cindy
    [J]. 2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 490 - 497
  • [30] Evaluation of an integrated modelling system containing a multi-layer perceptron model and the numerical weather prediction model HIRLAM for the forecasting of urban airborne pollutant concentrations
    Niska, H
    Rantamäki, M
    Hiltunen, T
    Karppinen, A
    Kukkonen, J
    Ruuskanen, J
    Kolehmainen, M
    [J]. ATMOSPHERIC ENVIRONMENT, 2005, 39 (35) : 6524 - 6536