A hybrid genetic-particle swarm optimization algorithm for multi-constraint optimization problems

被引:12
|
作者
Duan, Bosong [1 ]
Guo, Chuangqiang [1 ]
Liu, Hong [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Particle swarm optimization; Genetic algorithm; Multi-constraint optimization problem; Genetic-particle swarm optimization algorithm; EVOLUTIONARY;
D O I
10.1007/s00500-022-07489-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new hybrid genetic-particle swarm optimization (GPSO) algorithm for solving multi-constrained optimization problems. This algorithm is different from the traditional GPSO algorithm, which adopts genetic algorithm (GA) and particle swarm optimization (PSO) in series, and it combines PSO and GA through parallel architecture, so as to make full use of the high efficiency of PSO and the global optimization ability of GA. The algorithm takes PSO as the main body and runs PSO at the initial stage of optimization, while GA does not participate in operation. When the global best value (gbest) does not change for successive generations, it is assumed that it falls into local optimum. At this time, GA is used to replace PSO for particle selection, crossover and mutation operations to update particles and help particles jump out of local optimum. In addition, the GPSO adopts adaptive inertia weight, adaptive mutation parameters and multi-point crossover operation between particles and personal best value (pbest) to improve the optimization ability of the algorithm. Finally, this paper uses a nonlinear constraint problem (Himmelblau's nonlinear optimization problem) and three structural optimization problems (pressure vessel design problem, the welded beam design problem and the gear train design problem) as test functions and compares the proposed GPSO with the traditional GPSO, dingo optimization algorithm, whale optimization algorithm and grey wolf optimizer. The performance evaluation of the proposed algorithm is carried out by using the evaluation indexes such as best value, mean value, median value, worst value, standard deviation, operation time and convergence speed. The comparison results show that the proposed GPSO has obvious advantages in finding the optimal value, convergence speed and time overhead.
引用
收藏
页码:11695 / 11711
页数:17
相关论文
共 50 条
  • [31] A hybrid of genetic algorithm and particle swarm optimization for antenna design
    Li, W. T.
    Xu, L.
    Shi, X. W.
    [J]. PIERS 2008 HANGZHOU: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, VOLS I AND II, PROCEEDINGS, 2008, : 1249 - 1253
  • [32] HPSOM: A HYBRID PARTICLE SWARM OPTIMIZATION ALGORITHM WITH GENETIC MUTATION
    Esmin, Ahmed A. A.
    Matwin, Stan
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2013, 9 (05): : 1919 - 1934
  • [33] A hybrid genetic algorithm and particle swarm optimization for multimodal functions
    Kao, Yi-Tung
    Zahara, Erwie
    [J]. APPLIED SOFT COMPUTING, 2008, 8 (02) : 849 - 857
  • [34] Adaptive fractional-order genetic-particle swarm optimization Otsu algorithm for image segmentation
    Liping Chen
    Jinhui Gao
    António M. Lopes
    Zhiqiang Zhang
    Zhaobi Chu
    Ranchao Wu
    [J]. Applied Intelligence, 2023, 53 : 26949 - 26966
  • [35] A Hybrid Sperm Swarm Optimization and Genetic Algorithm for Unimodal and Multimodal Optimization Problems
    Raj, Bryan
    Ahmedy, Ismail
    Idris, Mohd Yamani Idna
    Noor, Rafidah Md
    [J]. IEEE ACCESS, 2022, 10 : 109580 - 109596
  • [36] Hybrid Particle Swarm Optimization and Genetic Algorithm for Multi-UAV Formation Reconfiguration
    Duan, Haibin
    Luo, Qinan
    Ma, Guanjun
    Shi, Yuhui
    [J]. IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2013, 8 (03) : 16 - 27
  • [37] A Hybrid Particle Swarm Optimization Algorithm
    Qi Changxing
    Bi Yiming
    Han Huihua
    Li Yong
    [J]. PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 2187 - 2190
  • [38] On a hybrid particle swarm optimization algorithm
    Singh, Sharandeep
    Singh, Narinder
    Singh, S. B.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2016, 3 (12): : 96 - 105
  • [39] Particle Swarm Optimization Algorithm for Solving Optimization Problems
    Ozsaglam, M. Yasin
    Cunkas, Mehmet
    [J]. JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2008, 11 (04): : 299 - 305
  • [40] A hybrid Particle Swarm Optimization algorithm for function optimization
    Sevkli, Zulal
    Sevilgen, F. Erdogan
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2008, 4974 : 585 - +