Tuning-Free Contact-Implicit Trajectory Optimization

被引:0
|
作者
Onol, Aykut Ozgun [1 ]
Corcodel, Radu [2 ]
Long, Philip [3 ]
Padir, Taskin [1 ]
机构
[1] Northeastern Univ, Inst Experiential Robot, Boston, MA 02115 USA
[2] Mitsubishi Elect Res Labs, Cambridge, MA USA
[3] Irish Mfg Res, Dublin, Ireland
基金
美国国家科学基金会;
关键词
BODIES;
D O I
10.1109/icra40945.2020.9196805
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a contact-implicit trajectory optimization framework that can plan contact-interaction trajectories for different robot architectures and tasks using a trivial initial guess and without requiring any parameter tuning. This is achieved by using a relaxed contact model along with an automatic penalty adjustment loop for suppressing the relaxation. Moreover, the structure of the problem enables us to exploit the contact information implied by the use of relaxation in the previous iteration, such that the solution is explicitly improved with little computational overhead. We test the proposed approach in simulation experiments for non-prehensile manipulation using a 7-DOF arm and a mobile robot and for planar locomotion using a humanoid-like robot in zero gravity. The results demonstrate that our method provides an out-of-the-box solution with good performance for a wide range of applications.
引用
收藏
页码:1183 / 1189
页数:7
相关论文
共 50 条
  • [31] Towards Tuning-Free Minimum-Volume Nonnegative Matrix Factorization
    Nguyen, Duc Toan
    Chi, Eric C.
    [J]. PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 217 - 225
  • [32] HONES: A Fast and Tuning-free Homotopy Method For Online Newton Step
    Ye, Yuting
    Ju, Cheng
    Lei, Lihua
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [33] Contact-Implicit Differential Dynamic Programming for Model Predictive Control with Relaxed Complementarity Constraints
    Kim, Gijeong
    Kang, Dongyun
    Kim, Joon-Ha
    Park, Hae-Won
    [J]. 2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 11978 - 11985
  • [34] Tuning-free controller to accurately regulate flow rates in a microfluidic network
    Young Jin Heo
    Junsu Kang
    Min Jun Kim
    Wan Kyun Chung
    [J]. Scientific Reports, 6
  • [35] Trajectory Optimization of Contact-Rich Motions Using Implicit Differential Dynamic Programming
    Chatzinikolaidis, Iordanis
    Li, Zhibin
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 2626 - 2633
  • [36] TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation
    Mueller, Samuel G.
    Hutter, Frank
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 754 - 762
  • [37] Don't Fall for Tuning Parameters: Tuning-Free Variable Selection in High Dimensions With the TREX
    Lederer, Johannes
    Mueller, Christian L.
    [J]. PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 2729 - 2735
  • [38] Tuning-Free Inversion-Enhanced Control for Consistent Image Editing
    Duan, Xiaoyue
    Cui, Shuhao
    Kang, Guoliang
    Zhang, Baochang
    Fei, Zhengcong
    Fan, Mingyuan
    Huang, Junshi
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 2, 2024, : 1644 - 1652
  • [39] Structural Damage Identification with a Tuning-free Hybrid Extended Kalman Filter
    Yun, Da Yo
    Hong, Taehoon
    Lee, Dong-Eun
    Park, Hyo Seon
    [J]. STRUCTURAL ENGINEERING INTERNATIONAL, 2021, 31 (03) : 391 - 405
  • [40] A tuning-free method for parameter estimation under varying error characteristics
    Agarwal, M
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 1999, 20 (04): : 213 - 221