Temperature calibration of heated silicon atomic force microscope cantilevers

被引:75
|
作者
Nelson, B. A.
King, W. P. [1 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[2] Univ Illinois, Dept Engn Sci & Mech, Urbana, IL 61822 USA
基金
美国国家科学基金会;
关键词
microcantilever; microheater; Raman; thermometry; atomic force microscopy; thermal sensors;
D O I
10.1016/j.sna.2007.06.008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents calibration techniques for heated silicon atomic force microscope cantilevers and analyzes the accuracy of these techniques. A calibration methodology using Raman thermometry is presented and validated with heat transfer simulations and experimental measurements. Raman thermometry generates a calibration standard against which other techniques can be compared. Theoretical predictions of the cantilever temperature-dependent electrical properties do not by themselves provide accurate cantilever temperature calibration. Isothermal calibration is also insufficient. The temperature calibrations are stable with storage time and number of heating cycles, although an electrical 'burn-in' period is required to stabilize the cantilever response. These techniques for precise temperature calibration of heatable silicon cantilevers are required for applications where temperature must be carefully controlled, including surface science measurements and nano-manufacturing. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 59
页数:9
相关论文
共 50 条
  • [31] Error in dynamic spring constant calibration of atomic force microscope probes due to nonuniform cantilevers
    Frentrup, Hendrik
    Allen, Matthew S.
    NANOTECHNOLOGY, 2011, 22 (29)
  • [32] Calibration of T-shaped atomic force microscope cantilevers using the thermal noise method
    Kim, Youngkyu
    Mandriota, Nicola
    Goodnight, Davis
    Sahin, Ozgur
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (08):
  • [33] The multi-position calibration of the stiffness for atomic-force microscope cantilevers based on vibration
    Zheng, Yelong
    Song, Le
    Hu, Gang
    Cai, Xue
    Liu, Hongguang
    Ma, Jinyu
    Zhao, Meirong
    Fang, Fengzhou
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2015, 26 (05) : 1 - 7
  • [34] Susceptibility of atomic force microscope cantilevers to lateral forces
    Sader, JE
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (04): : 2438 - 2443
  • [35] Studies of vibrating atomic force microscope cantilevers in liquid
    Schaffer, TE
    Cleveland, JP
    Ohnesorge, F
    Walters, DA
    Hansma, PK
    JOURNAL OF APPLIED PHYSICS, 1996, 80 (07) : 3622 - 3627
  • [36] Mathematical modeling of nanomachining with atomic force microscope cantilevers
    Chang, Win-Jin
    Lee, Haw-Long
    Yang, Yu-Ching
    2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES 2013 (IC-MSQUARE 2013), 2014, 490
  • [37] The impact of subcontinuum gas conduction on topography measurement sensitivity using heated atomic force microscope cantilevers
    Masters, ND
    Ye, WJ
    King, WP
    PHYSICS OF FLUIDS, 2005, 17 (10)
  • [38] Transfer function analysis of atomic force microscope cantilevers
    Rubio-Sierra, F. J.
    Vazquez, R.
    Stark, R. W.
    Proceedings of the ASME Design Engineering Division 2005, Pts A and B, 2005, : 485 - 491
  • [39] Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers
    Killgore, Jason P.
    Tung, Ryan C.
    Hurley, Donna C.
    NANOTECHNOLOGY, 2014, 25 (34)
  • [40] LASER THERMAL EFFECTS ON ATOMIC FORCE MICROSCOPE CANTILEVERS
    ALLEGRINI, M
    ASCOLI, C
    BASCHIERI, P
    DINELLI, F
    FREDIANI, C
    LIO, A
    MARIANI, T
    ULTRAMICROSCOPY, 1992, 42 : 371 - 378