Incremental activation detection in FMRI series using Kalman filtering

被引:0
|
作者
Roche, A [1 ]
Lahaye, PJ [1 ]
Poline, JB [1 ]
机构
[1] CEA, Serv Hosp Frederic Joliot, F-91406 Orsay, France
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We propose a new detection algorithm for functional magnetic resonance imaging (fMRI) data. Our basic idea is to use an extended Kalman filter (EKF) to fit a general linear model on fMRI time courses, under the assumption of one-degree autoregressive noise with unknown autocorrelation. Because the EKF is designed to be an incremental algorithm, it enables us to compute activation maps on each scan time, and this at moderate computational cost. While our technique is evaluated "offline" in this paper, we believe it is potentially well-suited for future real-time applications.
引用
收藏
页码:376 / 379
页数:4
相关论文
共 50 条
  • [31] Identification of Low Voltage AC Series Arc Faults by using Kalman Filtering Algorithm
    Zhang, Shiwen
    Zhang, Feng
    Liu, Peng
    Han, Zhengzhi
    [J]. ELEKTRONIKA IR ELEKTROTECHNIKA, 2014, 20 (05) : 51 - 56
  • [32] FMRI ACTIVATION DETECTION USING A VARIANT OF AKAIKE INFORMATION CRITERION
    Seghouane, Abd-Krim
    [J]. 2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 233 - 236
  • [33] KALMAN FILTERING APPLIED TO ENGINE FAULT DETECTION
    Darwis, Sutawanir
    Hajarisman, Nusar
    Yanti, Teti Sofia
    Sobri, Mohammad
    Muharam, Irfan
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2015, 46 (03) : 225 - 236
  • [34] Clustering of FMRI data for activation detection using HDR models
    Rao, AA
    Talavage, TM
    [J]. PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 1876 - 1879
  • [35] Joint Iterative Detection and Phase Noise Estimation Algorithms Using Kalman Filtering
    Shehata, Tarik S.
    El-Tanany, Mohamed
    [J]. 2009 11TH CANADIAN WORKSHOP ON INFORMATION THEORY, 2009, : 165 - 168
  • [36] Detection of microbubble trajectories on M-mode images using Kalman filtering
    Balocco, S.
    Basset, O.
    Guidi, F.
    Tortoli, P.
    Cachard, C.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 1817 - 1820
  • [37] Distributed detection of Gauss-Markov signals using diffusion Kalman filtering
    Pang, Feifei
    Dogancay, Kutluyil
    Zhang, Qunfei
    [J]. SIGNAL PROCESSING, 2018, 153 : 368 - 378
  • [38] Fault Detection Using Consensus-Based Linear Distributed Kalman Filtering
    Krokavec, Dusan
    Filasova, Anna
    [J]. 2019 20TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2019, : 25 - 30
  • [39] Automatic Sensor drift detection and correction using Spatial Kriging and Kalman filtering
    Kumar, Dheeraj
    Rajasegarar, Sutharshan
    Palaniswami, Marimuthu
    [J]. 2013 9TH IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SENSOR SYSTEMS (IEEE DCOSS 2013), 2013, : 183 - 190
  • [40] Using the Kalman filtering for the Fault Detection and Isolation (FDI) in the nonlinear dynamic processes
    Chetouani, Yahya
    [J]. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2008, 6