Incremental activation detection in FMRI series using Kalman filtering

被引:0
|
作者
Roche, A [1 ]
Lahaye, PJ [1 ]
Poline, JB [1 ]
机构
[1] CEA, Serv Hosp Frederic Joliot, F-91406 Orsay, France
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We propose a new detection algorithm for functional magnetic resonance imaging (fMRI) data. Our basic idea is to use an extended Kalman filter (EKF) to fit a general linear model on fMRI time courses, under the assumption of one-degree autoregressive noise with unknown autocorrelation. Because the EKF is designed to be an incremental algorithm, it enables us to compute activation maps on each scan time, and this at moderate computational cost. While our technique is evaluated "offline" in this paper, we believe it is potentially well-suited for future real-time applications.
引用
收藏
页码:376 / 379
页数:4
相关论文
共 50 条
  • [1] Incremental Activation Detection for Real-Time fMRI Series Using Robust Kalman Filter
    Li, Liang
    Yan, Bin
    Tong, Li
    Wang, Linyuan
    Li, Jianxin
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2014, 2014
  • [2] Activation detection on fMRI time series using Hidden Markov Model
    Duan, R
    Man, H
    Jiang, W
    Liu, WC
    [J]. 2005 2ND INTERNATINOAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, 2005, : 510 - 513
  • [3] Detection of Harmonic Occurring using Kalman Filtering
    Hussain, D. M. Akbar
    Shoro, Ghulam Mustafa
    Raja, Muhammad Imran
    [J]. 2014 IEEE PES T&D CONFERENCE AND EXPOSITION, 2014,
  • [4] Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering
    Havlicek, Martin
    Friston, Karl J.
    Jan, Jiri
    Brazdil, Milan
    Calhoun, Vince D.
    [J]. NEUROIMAGE, 2011, 56 (04) : 2109 - 2128
  • [5] Fast Incremental Naive Bayes with Kalman Filtering
    Ziffer, Giacomo
    Bernardo, Alessio
    Valle, Emanuele Della
    Bifet, Albert
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 883 - 889
  • [6] Cognitive states detection in fMRI using incremental PCA
    Hoang, Minh-Tuan T.
    Won, Yonggwan
    Yang, Hyung-Jeong
    [J]. ICCSA 2007: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND APPLICATIONS, 2007, : 335 - +
  • [7] Activation detection in fMRI using a maximum energy ratio statistic obtained by adaptive spatial filtering
    Hossein-Zadeh, GA
    Ardekani, BA
    Soltanian-Zadeh, H
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2003, 22 (07) : 795 - 805
  • [8] Haemodynamic Response Function (HRF) Model Selection in fMRI using Kalman Filtering
    Rosa, Paulo
    Silvestre, Carlos
    Figueiredo, Patricia
    [J]. 2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 4040 - 4045
  • [9] Automotive engine misfire detection using Kalman filtering
    Lee, A
    Loh, RNK
    Wu, ZJW
    [J]. 2003 IEEE 58TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS1-5, PROCEEDINGS, 2003, : 3377 - 3381
  • [10] VOICING DETECTION BY KALMAN FILTERING
    ARCESE, A
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1975, 58 : S61 - S61