The effects of chemical kinetic mechanisms on large eddy simulation (LES) of a nonpremixed hydrogen jet flame

被引:11
|
作者
Zhou, Xuejin [1 ,2 ]
Jiang, Xi [3 ]
Martinez, Daniel Mira [4 ]
机构
[1] Univ Sci & Technol China, Dept Safety Sci Engn, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
[3] Univ Lancaster, Dept Engn, Lancaster LA1 4YR, England
[4] Barcelona Supercomp Ctr BSC CNS, Barcelona, Spain
关键词
Detailed chemistry; Hydrogen combustion; Large eddy simulation; Linear eddy model; Nonpremixed flames; COMBUSTION CHARACTERISTICS; NUMERICAL-SIMULATION; TURBULENT TRANSPORT; H-2/N-2; MODELS; COEFFICIENT; CHEMISTRY; FLOW; HOT;
D O I
10.1016/j.ijhydene.2016.04.079
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Five different chemical mechanisms for hydrogen combustion are employed in large eddy simulation of a nonpremixed hydrogen jet flame to investigate the ability of these mechanisms to represent the turbulence-chemistry interactions and other combustion phenomena. The mechanisms studied include a reduced mechanism, two detailed H-2/O-2 reaction mechanisms, as well as a detailed H-2/CO mechanism and the GRI3.0 mechanism. Linear eddy model is incorporated to evaluate the effect of turbulence-chemistry interactions. Extensive simulations of a well-known experimental case (German Aerospace Centre DLR nonpremixed flame M2) have been performed for the purpose of validation. Comparisons against experimental data including scalar distribution profiles are presented where a reasonable agreement is observed for the detailed mechanisms. Flux analyses of the species conservation equations and ignition delay time tests showed that chemical kinetics plays a role in the development of flame structures in the jet flame. This study highlights the importance of precise descriptions of the chemical kinetics in LES of non premixed hydrogen combustion. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:11427 / 11440
页数:14
相关论文
共 50 条
  • [41] THE COMPOSITIONAL STRUCTURE AND THE EFFECTS OF EXOTHERMICITY IN A NONPREMIXED PLANAR JET FLAME
    STEINBERGER, CJ
    VIDONI, TJ
    GIVI, P
    COMBUSTION AND FLAME, 1993, 94 (03) : 217 - 232
  • [42] Effects of Plasma Discharges on the Ignition of a Laminar Nonpremixed Jet Flame
    Liao, Ying-Hao
    Sun, Ming-Chien
    Lai, Ru-Yi
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2018, 46 (08) : 2881 - 2886
  • [43] Conditional source-term estimation with laminar flamelet decomposition in large eddy simulation of a turbulent nonpremixed flame
    Wang, M.
    Bushe, W. K.
    PHYSICS OF FLUIDS, 2007, 19 (11)
  • [44] Large-eddy simulation of turbulent autoigniting hydrogen lifted jet flame with a multi-regime flamelet approach
    Hu, Yong
    Kurose, Ryoichi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (12) : 6313 - 6324
  • [45] Large eddy simulation of hydrogen/air co-flow jet flame in the strut-based supersonic combustor
    Li, Xin
    Pan, Yu
    Liu, Chaoyang
    He, Ni
    Zou, Junbo
    AEROSPACE SCIENCE AND TECHNOLOGY, 2024, 146
  • [46] Large eddy simulation of hydrogen/air co-flow jet flame in the strut-based supersonic combustor
    Li, Xin
    Pan, Yu
    Liu, Chaoyang
    He, Ni
    Zou, Junbo
    Aerospace Science and Technology, 2024, 146
  • [47] Large-eddy simulation of the Sydney swirling nonpremixed flame and validation of several subgrid-scale models
    Hu, L. Y.
    Zhou, L. X.
    Luo, Y. H.
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2008, 53 (01) : 39 - 58
  • [48] Large eddy simulation of turbulent flame
    T. Tominaga
    Y. Itoh
    M. Hirohata
    T. Kobayashi
    N. Taniguchi
    Journal of Visualization, 2002, 5 : 314 - 314
  • [49] Large eddy simulation of turbulent flame
    Tominaga, T
    Itoh, Y
    Hirohata, M
    Kobayashi, T
    Taniguchi, N
    JOURNAL OF VISUALIZATION, 2002, 5 (04) : 314 - 314
  • [50] Two-dimensional large eddy simulation of soot formation in the near-field of a strongly radiating nonpremixed acetylene-air turbulent jet flame
    Desjardin, PE
    Frankel, SH
    COMBUSTION AND FLAME, 1999, 119 (1-2) : 121 - 132