Building a spatiotemporal index for Earth Observation Big Data

被引:21
|
作者
Xia, Jizhe [1 ,2 ,4 ]
Yang, Chaowei [3 ]
Li, Qingquan [1 ,2 ,4 ]
机构
[1] Shenzhen Univ, Sch Architecture & Urban Planning, Shenzhen Key Lab Spatial Informat Smart Sensing &, Shenzhen, Peoples R China
[2] Shenzhen Univ, Res Inst Smart Cities, Shenzhen, Peoples R China
[3] George Mason Univ, NSF Spatiotemporal Innovat Ctr, Fairfax, VA 22030 USA
[4] Shenzhen Univ, Key Lab Geoenvironm Monitoring Coastal Zone, Natl Adm Surveying Mapping & GeoInformat, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
GEOSS; Spatial data infrastructure; Data indexing; Information retrieval; Earth observation big data; GEOSS CLEARINGHOUSE; PRINCIPLES;
D O I
10.1016/j.jag.2018.04.012
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
With the rapid advancement of Earth Observation systems, Earth Observation data has been collected and accumulated at an unprecedented fast rate. Earth Observation Big Data emerged with new opportunities for human to better understand the Earth systems, but also pose a tremendous challenge for efficiently transforming Big Data into Earth Observation Big Value. Targeting on this challenge, a well-organized data index is a key to enhance the "Data-Value" transformation by accelerating the access to data. Although various data indexing approaches have been proposed with different optimization objectives, literature shows that there are still apparent limitations for Earth Observation data indexing. This paper aims to build a spatiotemporal indexing for Earth Observation Big Data. Specifically, a) to support various Earth Observation Data Infrastructures, we adopt an indexing framework to efficiently retrieve data with various textual, spatial and temporal requirements; b) a distributed indexing structure is designed to improve the index scalability; c) data access pattern is integrated to the indexing algorithm for both spatial and workload balancing. The results show that our indexing approach outperforms traditional indexing approaches and accelerates the access to Earth Observation data. We envision that data indexing will become a key technology that drives fundamental Earth Observation advancements in the Big Data era.
引用
收藏
页码:245 / 252
页数:8
相关论文
共 50 条
  • [41] Learning from multimodal and multitemporal earth observation data for building damage mapping
    Adriano, Bruno
    Yokoya, Naoto
    Xia, Junshi
    Miura, Hiroyuki
    Liu, Wen
    Matsuoka, Masashi
    Koshimura, Shunichi
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 175 : 132 - 143
  • [42] THE DYDAS - "DYNAMIC DATA ANALYTICS SERVICES" PLATFORM FOR HPC BIG DATA ANALYTICS OF EARTH OBSERVATION AND GEOSPATIAL DATA
    Picchiani, M.
    Maranesi, M.
    Mastrucci, M.
    Coltea, I. G.
    Pompei, G.
    Di Giacomo, L.
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4011 - 4014
  • [43] CHINA DATA CUBE (CDC) FOR BIG EARTH OBSERVATION DATA: LESSONS LEARNED FROM THE DESIGN AND IMPLEMENTATION
    Yao, Xiaochuang
    Liu, Yingbo
    Cao, Qianqian
    Li, Junjie
    Huang, Ruihong
    Woodcock, Robert
    Paget, Matt
    Wang, Jian
    Li, Guoqing
    [J]. 2018 INTERNATIONAL WORKSHOP ON BIG GEOSPATIAL DATA AND DATA SCIENCE (BGDDS 2018), 2018,
  • [44] Earth observation and geospatial big data management and engagement of stakeholders in Hungary to support the SDGs
    Mihaly, Szabolcs
    Remetey-Fulopp, Gabor
    Kristof, Daniel
    Czinkoczky, Anna
    Palya, Tamas
    Pasztor, Laszlo
    Rudan, Pal
    Szabo, Gyorgy
    Zentai, Laszlo
    [J]. BIG EARTH DATA, 2021, 5 (03) : 306 - 351
  • [45] Big Earth Observation Data Integration in Remote Sensing Based on a Distributed Spatial Framework
    Cheng, Yinyi
    Zhou, Kefa
    Wang, Jinlin
    Yan, Jining
    [J]. REMOTE SENSING, 2020, 12 (06)
  • [46] Enabling the Big Earth Observation Data via Cloud Computing and DGGS: Opportunities and Challenges
    Yao, Xiaochuang
    Li, Guoqing
    Xia, Junshi
    Ben, Jin
    Cao, Qianqian
    Zhao, Long
    Ma, Yue
    Zhang, Lianchong
    Zhu, Dehai
    [J]. REMOTE SENSING, 2020, 12 (01)
  • [47] The challenges of a Big Data Earth
    Boulton, Geoffrey
    [J]. BIG EARTH DATA, 2018, 2 (01) : 1 - 7
  • [48] Big Building Data - a Big Data Platform for Smart Buildings
    Linder, Lucy
    Vionnet, Damien
    Bacher, Jean-Philippe
    Hennebert, Jean
    [J]. CISBAT 2017 INTERNATIONAL CONFERENCE FUTURE BUILDINGS & DISTRICTS - ENERGY EFFICIENCY FROM NANO TO URBAN SCALE, 2017, 122 : 589 - 594
  • [49] Building-up a Burned Area Monitoring System based on Earth Observation data
    Paúl, JU
    Caetano, MR
    Santos, T
    [J]. REMOTE SENSING IN THE 21ST CENTURY: ECONOMIC AND ENVIRONMENTAL APPLICATIONS, 2000, : 325 - 328
  • [50] Archives for Earth observation data
    Harris, R
    Olby, N
    [J]. SPACE POLICY, 2000, 16 (03) : 223 - 227