Heterogeneous Multi-task Learning for Human Pose Estimation with Deep Convolutional Neural Network

被引:51
|
作者
Li, Sijin [1 ]
Liu, Zhi-Qiang [2 ]
Chan, Antoni B. [3 ,4 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
[2] City Univ Hong Kong, SCM, Hong Kong, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Multimedia Software Engn Res Ctr MERC, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
[4] Multimedia Software Engn Res Ctr MERC, Shenzhen, Guangdong, Peoples R China
关键词
Human Pose Estimation; Deep Learning;
D O I
10.1007/s11263-014-0767-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a heterogeneous multi-task learning framework for human pose estimation from monocular images using a deep convolutional neural network. In particular, we simultaneously learn a human pose regressor and sliding-window body-part and joint-point detectors in a deep network architecture. We show that including the detection tasks helps to regularize the network, directing it to converge to a good solution. We report competitive and state-of-art results on several datasets. We also empirically show that the learned neurons in the middle layer of our network are tuned to localized body parts.
引用
收藏
页码:19 / 36
页数:18
相关论文
共 50 条
  • [31] Optimal Deep Convolutional Neural Network with Pose Estimation for Human Activity Recognition
    Nandagopal, S.
    Karthy, G.
    Oliver, A. Sheryl
    Subha, M.
    [J]. COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2023, 44 (02): : 1719 - 1733
  • [32] Squirrel Search Optimization with Deep Convolutional Neural Network for Human Pose Estimation
    Ishwarya, K.
    Nithya, A. Alice
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (03): : 6081 - 6099
  • [33] Real-Time Human Pose Estimation via Cascaded Neural Networks Embedded with Multi-task Learning
    Tanabe, Satoshi
    Yamanaka, Ryosuke
    Tomono, Mitsuru
    Ito, Makiko
    Ishihara, Teruo
    [J]. COMPUTER ANALYSIS OF IMAGES AND PATTERNS: 17TH INTERNATIONAL CONFERENCE, CAIP 2017, PT II, 2017, 10425 : 241 - 252
  • [34] A multi-task convolutional deep neural network for variant calling in single molecule sequencing
    Luo, Ruibang
    Sedlazeck, Fritz J.
    Lam, Tak-Wah
    Schatz, Michael C.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [35] A multi-task fully deep convolutional neural network for contactless fingerprint minutiae extraction
    Zhang, Zhao
    Liu, Shuxin
    Liu, Manhua
    [J]. PATTERN RECOGNITION, 2021, 120
  • [36] A multi-task convolutional deep neural network for variant calling in single molecule sequencing
    Ruibang Luo
    Fritz J. Sedlazeck
    Tak-Wah Lam
    Michael C. Schatz
    [J]. Nature Communications, 10
  • [37] Chimera: A Multi-Task Recurrent Convolutional Neural Network for Forest Classification and Structural Estimation
    Chang, Tony
    Rasmussen, Brandon P.
    Dickson, Brett G.
    Zachmann, Luke J.
    [J]. REMOTE SENSING, 2019, 11 (07)
  • [38] Episodic Multi-Task Learning with Heterogeneous Neural Processes
    Shen, Jiayi
    Zhen, Xiantong
    Wang, Qi
    Worring, Marcel
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [39] Distance Estimation in Thermal Cameras Using Multi-Task Cascaded Convolutional Neural Network
    Caliwag, Ej Miguel Francisco
    Caliwag, Angela
    Baek, Bong-Ki
    Jo, Yongrae
    Chung, Hae
    Lim, Wansu
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (17) : 18519 - 18525
  • [40] Human Pose Estimation via Multi-resolution Convolutional Neural Network
    Zhu, Aichun
    Jin, Jing
    Wang, Tian
    Zhu, Qiurong
    [J]. PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 700 - 705