Heterogeneous Multi-task Learning for Human Pose Estimation with Deep Convolutional Neural Network

被引:51
|
作者
Li, Sijin [1 ]
Liu, Zhi-Qiang [2 ]
Chan, Antoni B. [3 ,4 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
[2] City Univ Hong Kong, SCM, Hong Kong, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Multimedia Software Engn Res Ctr MERC, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
[4] Multimedia Software Engn Res Ctr MERC, Shenzhen, Guangdong, Peoples R China
关键词
Human Pose Estimation; Deep Learning;
D O I
10.1007/s11263-014-0767-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a heterogeneous multi-task learning framework for human pose estimation from monocular images using a deep convolutional neural network. In particular, we simultaneously learn a human pose regressor and sliding-window body-part and joint-point detectors in a deep network architecture. We show that including the detection tasks helps to regularize the network, directing it to converge to a good solution. We report competitive and state-of-art results on several datasets. We also empirically show that the learned neurons in the middle layer of our network are tuned to localized body parts.
引用
收藏
页码:19 / 36
页数:18
相关论文
共 50 条
  • [1] Heterogeneous Multi-task Learning for Human Pose Estimation with Deep Convolutional Neural Network
    Li, Sijin
    Liu, Zhi-Qiang
    Chan, Antoni B.
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2014, : 488 - +
  • [2] Heterogeneous Multi-task Learning for Human Pose Estimation with Deep Convolutional Neural Network
    Sijin Li
    Zhi-Qiang Liu
    Antoni B. Chan
    [J]. International Journal of Computer Vision, 2015, 113 : 19 - 36
  • [3] Dynamic Multi-Task Learning with Convolutional Neural Network
    Fang, Yuchun
    Ma, Zhengyan
    Zhang, Zhaoxiang
    Zhang, Xu-Yao
    Bai, Xiang
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1668 - 1674
  • [4] A multi-task learning convolutional neural network for source localization in deep ocean
    Liu, Yining
    Niu, Haiqiang
    Li, Zhenglin
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2020, 148 (02): : 873 - 883
  • [5] Deep Convolutional Neural Network with Multi-Task Learning Scheme for Modulations Recognition
    Mossad, Omar S.
    ElNainay, Mustafa
    Torki, Marwan
    [J]. 2019 15TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2019, : 1644 - 1649
  • [6] Atrial Fibrillation Burden Estimation Using Multi-Task Deep Convolutional Neural Network
    Prabhakararao, Eedara
    Dandapat, Samarendra
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (12) : 5992 - 6002
  • [7] PedRecNet: Multi-task deep neural network for full 3D human pose and orientation estimation
    Burgermeister, Dennis
    Curio, Cristobal
    [J]. 2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 441 - 448
  • [8] Multi-task deep convolutional neural network for cancer diagnosis
    Liao, Qing
    Ding, Ye
    Jiang, Zoe L.
    Wang, Xuan
    Zhang, Chunkai
    Zhang, Qian
    [J]. NEUROCOMPUTING, 2019, 348 : 66 - 73
  • [9] Real-time head pose estimation using multi-task deep neural network
    Ahn, Byungtae
    Choi, Dong-Geol
    Park, Jaesik
    Kweon, In So
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 103 : 1 - 12
  • [10] Multi-Task Convolutional Neural Network for Pose-Invariant Face Recognition
    Yin, Xi
    Liu, Xiaoming
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (02) : 964 - 975