Quantum generalized Toda system

被引:0
|
作者
Talalaev, D. V. [1 ,2 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
[2] Inst Theoret & Expt Phys, Moscow 117259, Russia
基金
俄罗斯基础研究基金会;
关键词
quantization; integrable system; flag space;
D O I
10.1007/s11232-012-0066-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a "spectral curve" for the generalized Toda system, which allows efficiently finding its quantization. In turn, the quantization is realized using the technique of the quantum characteristic polynomial for the Gaudin system and an appropriate Alder-Kostant-Symes reduction. We also discuss some relations of this result to the recent consideration of the Drinfeld Zastava space, the monopole space, and corresponding symmetries of the Borel Yangian.
引用
收藏
页码:691 / 699
页数:9
相关论文
共 50 条
  • [11] THE QUANTUM TODA CHAIN
    SKLYANIN, EK
    PHYSICA D, 1987, 28 (1-2): : 226 - 226
  • [12] QUANTUM TODA THEORY
    BABELON, O
    BONORA, L
    PHYSICS LETTERS B, 1991, 253 (3-4) : 365 - 372
  • [13] GENERALIZED TODA AND VOLTERRA MODELS
    AVAN, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (20): : 4855 - 4869
  • [14] Generalized bigraded Toda hierarchy
    Liu, Yue
    Yan, Xingjie
    Wang, Jinbiao
    Cheng, Jipeng
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (10)
  • [15] THE QUANTUM TODA LATTICE
    BRUSCHI, M
    LEVI, D
    OLSHANETSKY, MA
    PERELOMOV, AM
    RAGNISCO, O
    PHYSICS LETTERS A, 1982, 88 (01) : 7 - 12
  • [16] Study on generalized Toda mechanics system with loop algebra L(Dr)
    Zhu, Q
    Yang, ZY
    Shi, KH
    HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2005, 29 (01): : 19 - 22
  • [17] Generalized Calogero and Toda Models
    Chernyakov, Yu.
    Kharchev, S.
    Levin, A.
    Olshanetsky, M.
    Zotov, A.
    JETP LETTERS, 2019, 109 (02) : 136 - 143
  • [18] THE QUANTUM TODA CHAIN
    SKLYANIN, EK
    LECTURE NOTES IN PHYSICS, 1985, 226 : 196 - 233
  • [19] Generalized Toda field theories
    Brink, L
    Vasiliev, MA
    NUCLEAR PHYSICS B, 1995, 457 (1-2) : 273 - 308
  • [20] Generalized Calogero and Toda Models
    Yu. Chernyakov
    S. Kharchev
    A. Levin
    M. Olshanetsky
    A. Zotov
    JETP Letters, 2019, 109 : 136 - 143