Fast hyperspectral information production by AISA airborne imaging spectrometer.

被引:0
|
作者
Bärs, R [1 ]
Okkonen, J [1 ]
Bernard, W [1 ]
机构
[1] Spectral Imaging Ltd, Specim, FIN-90571 Oulu, Finland
关键词
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The AISA airborne hyperspectral imaging spectrometer is an excellent tool for fast-paced, repetitive measurements. Key features of AISA are small size, low power consumption, affordability and fast turn-around-time in data processing. This makes it an excellent means of production for businesses in precision agriculture, environmental monitoring, water-quality studies and other fields where quickly changing, dynamic conditions have to be observed. The fast turn-around-time in data processing allows for delivery of processed data and images in typically less than 24 hours after initial measurement. AISA provides full programmability for wavelength range, channel selection and integration time even during flight. The default wavelength range of AISA is 430 - 900 nm with a spectral sampling of 1.63 nm at 450 nm The spectral resolution is 1.8 nm when using a 25 mm entrance slit. The field of view (FOV) of AISA is 20 degrees when using a 25 mm lens. Image swath width is 384 pixels, which includes data from the fiber-optic downwelling irradiance sensor (FODIS). A configuration with 60 spectral channels, full swath including FODIS, 52 ms integration time and 77 m/s (277 km/h) flight speed from a flight altitude of 4000 m above ground gives a raw pixel size of 4 m*4 m. An integrated GPS/INS unit with differential GPS capability, a three-axial inertial attitude sensor and real-time Kalman filtering for three-dimensional navigation solution processing is integrated with the AISA system. This provides one pixel accuracy for rectification and georeferencing of measurement data without using a stabilized platform. The output from the CaliGeo data processing software package is a radiometrically calibrated, rectified and georeferenced hyperspectral image or image mosaic. This image is ready for use in advanced data analysis and visualization systems. Apparent reflectance can also be calculated in CaliGeo using the downwelling irradiance data from FODIS.
引用
收藏
页码:173 / 182
页数:4
相关论文
共 50 条
  • [41] Validation of Information Products of Airborne Hyperspectral Imagery Processing
    Kozoderov, V. V.
    Kondranin, T. V.
    Dmitriev, E. V.
    Kamentsev, V. P.
    [J]. IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2019, 55 (09) : 1022 - 1032
  • [42] SYSIPHE, airborne hyperspectral system: Focus on the SIELETERS thermal hyperspectral imaging instrument
    Rousset-Rouviere, Laurent
    Coudrain, Christophe
    Thetas, Sophie
    Primot, Jerome
    Ferrec, Yann
    Henry, Didier
    Tauvy, Michel
    Bernhardt, Sylvie
    Domel, Roland
    Perrault, Philippe
    Gouyon, Remi
    Kattnig, Alain
    Caes, Marcel
    Jacquart, Marc
    le Coadou, Gilles
    Guerineau, Nicolas
    Briottet, Xavier
    [J]. 2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2013,
  • [43] Compact prism spectrometer of pushbroom type for hyperspectral imaging
    Kaiser, Stefan
    Sang, Bernhard
    Schubert, Josef
    Hofer, Stefan
    Stuffler, Timo
    [J]. OPTICAL DESIGN AND ENGINEERING III, PTS 1 AND 2, 2008, 7100
  • [44] Smart nanophotonics silicon spectrometer array for hyperspectral imaging
    Ahamad, Ahasan
    Ghandiparsi, Soroush
    Bartoto-Perez, Cesar
    Mayen, Ahmed S.
    Cansizoglu, Hilal
    Devine, Ekatoina P.
    Elrefaie, Aly F.
    Dhae, Nibir K.
    Wang, Shih-Yuan
    Yang, Weijian
    Islam, M. Saif
    [J]. 2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [45] Airborne hyperspectral imaging of cyanobacteria accumulations in the Potomac River
    Szekielda, Karl H.
    Marmorino, George O.
    Maness, Shelia J.
    Donato, Timothy
    Bowles, Jeffrey H.
    Miller, W. David
    Rhea, W. Joseph
    [J]. Journal of Applied Remote Sensing, 2007, 1 (01):
  • [46] Airborne hyperspectral imaging for the detection of powdery mildew in wheat
    Franke, Jonas
    Mewes, Thorsten
    Mertz, Gunter
    [J]. IMAGING SPECTROMETRY XIII, 2008, 7086
  • [47] Determination of pasture quality using airborne hyperspectral imaging
    Reddy, Pullanagari R.
    Kereszturi, G.
    Ian, Yule J.
    Irwin, M. E.
    [J]. REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVII, 2015, 9637
  • [48] Hyperspectral imaging in the thermal infrared with the SIELETERS airborne system
    Gazzano O.
    Ferrec Y.
    Coudrain C.
    Rousset-Rouvière L.
    [J]. Revue Francaise de Photogrammetrie et de Teledetection, 2022, 224 (01): : 23 - 32
  • [49] Development and Application of Airborne Hyperspectral LiDAR Imaging Technology
    Gong Wei
    Shi Shuo
    Chen Bowen
    Song Shalei
    Wu Decheng
    Liu Dong
    Liu Zhengjun
    Liao Meisong
    [J]. ACTA OPTICA SINICA, 2022, 42 (12)
  • [50] Long wave hyperspectral imaging spectrometer design & implementation
    Miller, H
    Yokoyama, KE
    Rasmussen, K
    Engler, T
    Rupert, J
    Flegal, B
    Jarecke, P
    [J]. IMAGING SPECTROMETRY IX, 2003, 5159 : 255 - 261