Another equivalent of the graceful tree conjecture

被引:0
|
作者
Broersma, HJ [1 ]
Hoede, C [1 ]
机构
[1] Univ Twente, Fac Math Sci, NL-7500 AE Enschede, Netherlands
关键词
graceful; tree;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T = (V, E) be a tree on \V\ = n vertices. T is graceful if there exists a bijection f : V --> (0, 1,..., n - 1) such that {\f(u) - f(V)\ uv is an element of E} = (1,2,...,n - 1). If, moreover, T contains a perfect matching M and f can be chosen in such a way that f(u) + f(v) = n - 1 for every edge uv is an element of M (implying that {\f(u) - f(v)\ I u u is an element of M} = {1, 3,..., n - }), then T is called strongly graceful. We show that the well-known conjecture that all trees are graceful is equivalent to the conjecture that all trees containing a perfect matching are strongly graceful. We also give some applications of this result.
引用
收藏
页码:183 / 192
页数:10
相关论文
共 50 条
  • [21] THE ZEEMAN CONJECTURE FOR STANDARD SPINES IS EQUIVALENT TO THE POINCARE CONJECTURE
    GILLMAN, D
    ROLFSEN, D
    TOPOLOGY, 1983, 22 (03) : 315 - 323
  • [22] Construction of α-tree from smaller graceful trees
    Ahmad, Ali
    Baca, Martin
    Semanicova-Fenovcikova, Andrea
    Siddiqui, Muhammad Kamran
    UTILITAS MATHEMATICA, 2016, 99 : 175 - 186
  • [23] STABLE HOMEOMORPHISM CONJECTURE IN DIMENSION 4 - EQUIVALENT CONJECTURE
    FRIBERG, B
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1978, 30 (02): : 238 - 242
  • [24] EQUIVALENT STATEMENT OF THE POINCARE CONJECTURE
    HAJLASZ, P
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1994, 167 : 25 - 31
  • [25] Another Proof of the Nowicki Conjecture
    Drensky, Vesselin
    TOKYO JOURNAL OF MATHEMATICS, 2020, 43 (02) : 537 - 542
  • [26] Yet another additivity conjecture
    Matsumoto, K
    PHYSICS LETTERS A, 2006, 350 (3-4) : 179 - 181
  • [27] Another proof of Wilmes' conjecture
    Hopkins, Sam
    DISCRETE MATHEMATICS, 2014, 323 : 43 - 48
  • [28] ANOTHER BURSAL EQUIVALENT
    DAVIES, AJS
    NATURE, 1974, 249 (5455) : 306 - 307
  • [29] Another equivalent of the Lotschnittaxiom
    Pambuccian V.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2017, 58 (1): : 167 - 170
  • [30] ON THE TREE PACKING CONJECTURE
    Balogh, Jozsef
    Palmer, Cory
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (04) : 1995 - 2006