Fast multistage algorithm for K-NN classifiers

被引:0
|
作者
Soraluze, I [1 ]
Rodriguez, C [1 ]
Boto, F [1 ]
Cortes, A [1 ]
机构
[1] Univ Basque Country, EHU, Fac Comp Sci, Comp Architecture & Technol Dept, E-20080 San Sebastian, Spain
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a way to reduce the computational cost of k-NN classifiers without losing classification power. Hierarchical or multistage classifiers have been built with this purpose. These classifiers are designed putting incrementally trained classifiers into a hierarchy and using rejection techniques in all the levels of the hierarchy apart from the last. Results are presented for different benchmark data sets: some standard data sets taken from the UCI Repository and the Statlog Project, and NIST Special Databases (digits and upper-case and lower-case letters). In all the cases a computational cost reduction is obtained maintaining the recognition rate of the best individual classifier obtained.
引用
收藏
页码:448 / 455
页数:8
相关论文
共 50 条
  • [21] Effective construction of classifiers with the k-NN method supported by a concept ontology
    Bazan, Jan
    Bazan-Socha, Stanislawa
    Ochab, Marcin
    Buregwa-Czuma, Sylwia
    Nowakowski, Tomasz
    Wozniak, Miroslaw
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2020, 62 (04) : 1497 - 1510
  • [22] Contrast Virus Microscopy Images Recognition via k-NN Classifiers
    Shakri, Afiq Ahmad
    Jaafar, Haryati
    Saidi, Syahrul Affandi
    Junoh, Ahmad Kadri
    Mansor, Muhammad Naufal
    Mustafa, Wan Azani
    [J]. 2017 7TH IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM, COMPUTING AND ENGINEERING (ICCSCE), 2017, : 352 - 355
  • [23] Fast k-NN classification for multichannel image data
    Warfield, S
    [J]. PATTERN RECOGNITION LETTERS, 1996, 17 (07) : 713 - 721
  • [24] Ambient Intelligence Assistant for Running Sports Based on k-NN Classifiers
    Lopez-Matencio, P.
    Vales Alonso, J.
    Gonzalez-Castano, F. J.
    Sieiro, J. L.
    Alcaraz, J. J.
    [J]. 3RD INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTION, 2010, : 605 - 611
  • [25] Effective construction of classifiers with the k-NN method supported by a concept ontology
    Jan Bazan
    Stanisława Bazan-Socha
    Marcin Ochab
    Sylwia Buregwa-Czuma
    Tomasz Nowakowski
    Mirosław Woźniak
    [J]. Knowledge and Information Systems, 2020, 62 : 1497 - 1510
  • [26] An improved k-NN algorithm for localization in multipath environments
    Yang Zhao
    Kaihua Liu
    Yongtao Ma
    Zhuo Li
    [J]. EURASIP Journal on Wireless Communications and Networking, 2014
  • [27] A modification of the LAESA algorithm for approximated k-NN classification
    Moreno-Seco, F
    Micó, L
    Oncina, J
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (1-3) : 47 - 53
  • [28] A Framework for a Decision Tree Learning Algorithm with K-NN
    Kurematsu, Masaki
    Hakura, Jun
    Fujita, Hamido
    [J]. INTELLIGENT SOFTWARE METHODOLOGIES, TOOLS AND TECHNIQUES, SOMET 2014, 2015, 513 : 39 - 51
  • [29] Two manufacturing applications of the fuzzy K-NN algorithm
    Liao, TW
    Li, DM
    [J]. FUZZY SETS AND SYSTEMS, 1997, 92 (03) : 289 - 303
  • [30] Using Genetic Algorithm to Improve Fuzzy k-NN
    Zhang Juan
    Niu Yi
    He Wenbin
    [J]. 2008 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, VOLS 1 AND 2, PROCEEDINGS, 2008, : 475 - +