Extragradient method with Bregman distances for solving vector quasi-equilibrium problems

被引:0
|
作者
Mohebbi, Vahid [1 ]
机构
[1] Univ Texas El Paso, Dept Math Sci, 500 W Univ Ave, El Paso, TX 79968 USA
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2022年 / 41卷 / 08期
关键词
Bregman distance; Extragradient method; Linesearch; Quasi D-g-nonexpansive mapping; Vector quasi-equilibrium problem; Vector valued bifunction; GENERALIZED MONOTONE BIFUNCTIONS; PROXIMAL POINT; VARIATIONAL-INEQUALITIES; ALGORITHM; EFFICIENCY; EXISTENCE;
D O I
10.1007/s40314-022-02086-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the extragradient method for solving vector quasi-equilibrium problems in Banach spaces, which generalizes the extragradient method for vector equilibrium problems and scalar quasi-equilibrium problems. We propose a regularization procedure which ensures the strong convergence of the generated sequence to a solution of the vector quasi-equilibrium problem under standard assumptions on the problem without assuming neither any monotonicity assumption on the vector valued bifunction nor any weak continuity assumption of f in its arguments that in the many well-known methods have been used. Also, we show that the boundedness of the generated sequences implies that the solution set of the vector quasi-equilibrium problem is nonempty, and prove the strong convergence of the generated sequences to a solution of the problem. Finally, we give some examples of vector quasi-equilibrium problems to which our main theorem can be applied. We also present some numerical experiments.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Existence of solutions for generalized vector quasi-equilibrium problems
    Li, X. B.
    Li, S. J.
    [J]. OPTIMIZATION LETTERS, 2010, 4 (01) : 17 - 28
  • [32] Existences of solutions for generalized vector quasi-equilibrium problems
    Li, S. J.
    Zeng, J.
    [J]. OPTIMIZATION LETTERS, 2008, 2 (03) : 341 - 349
  • [33] System of vector quasi-equilibrium problems and its applications
    Jian-wei Peng
    Xin-min Yang
    Dao-li Zhu
    [J]. Applied Mathematics and Mechanics, 2006, 27 : 1107 - 1114
  • [34] Existence of solutions for generalized vector quasi-equilibrium problems
    X. B. Li
    S. J. Li
    [J]. Optimization Letters, 2010, 4 : 17 - 28
  • [35] The Study of the System of Generalized Vector Quasi-equilibrium Problems
    Zhi Lin
    [J]. Journal of Global Optimization, 2006, 36 : 627 - 635
  • [36] System of vector quasi-equilibrium problems and its applications
    Peng Jian-wen
    Yang Xin-min
    Zhu Dao-li
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (08) : 1107 - 1114
  • [37] The study of the system of generalized vector quasi-equilibrium problems
    Lin, Zhi
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2006, 36 (04) : 627 - 635
  • [38] Existences of solutions for generalized vector quasi-equilibrium problems
    S. J. Li
    J. Zeng
    [J]. Optimization Letters, 2008, 2 : 341 - 349
  • [39] ON SYSTEM OF VECTOR QUASI-EQUILIBRIUM PROBLEMS FOR MULTIVALUED MAPPINGS
    Farajzadeh, A. P.
    Shafie, A.
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2018, 42 (03): : 357 - 369
  • [40] SYSTEM OF VECTOR QUASI-EQUILIBRIUM PROBLEMS AND ITS APPLICATIONS
    彭建文
    杨新民
    朱道立
    [J]. Applied Mathematics and Mechanics(English Edition), 2006, (08) : 1107 - 1114