Validating variational principle for higher order theory of gravity

被引:4
|
作者
Ruz, Soumendranath [1 ]
Sarkar, Kaushik [1 ]
Sk, Nayem [1 ]
Sanyal, Abhik Kumar [2 ]
机构
[1] Univ Kalyani, Dept Phys, Nadia 741235, India
[2] Jangipur Coll, Dept Phys, Murshidabad 742213, India
关键词
f(R) gravity; variational principle; Noether symmetry; NOETHER SYMMETRY; GRAVITATIONAL ACTION; QUANTUM COSMOLOGY; TERMS;
D O I
10.1142/S0217732315501199
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Metric variation of higher order theory of gravity requires fixing of the Ricci scalar in addition to the metric tensor at the boundary. Fixing Ricci scalar at the boundary implies that the classical solutions are fixed once and forever to the de Sitter or antide Sitter (dS/AdS) solutions. Here, we justify such requirement from the standpoint of Noether symmetry.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A variational framework for higher order perturbations
    Chiaffredo, Federico
    Fatibene, Lorenzo
    Ferraris, Marco
    Ricossa, Emanuele
    Usseglio, Davide
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (05)
  • [42] Variational time discretizations of higher order and higher regularity
    Becher, Simon
    Matthies, Gunar
    BIT NUMERICAL MATHEMATICS, 2021, 61 (03) : 721 - 755
  • [43] Equivalence of variational problems of higher order
    Doubrov, Boris
    Zelenko, Igor
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (02) : 255 - 270
  • [44] Variational integrators for higher order Lagrangians
    Petrehus, Viorel
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2007, 50 (02): : 169 - 183
  • [45] VARIATIONAL PRINCIPLE AND STEENBECK MINIMUM PRINCIPLE IN CYLINDRICAL ARC THEORY
    LEPER, DP
    ZHURNAL TEKHNICHESKOI FIZIKI, 1973, 43 (07): : 1501 - 1506
  • [46] Causality principle in the relativistic theory of gravity
    Logunov, AA
    Mestvirishvili, MA
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 129 (01) : 1439 - 1445
  • [47] Causality Principle in the Relativistic Theory of Gravity
    A. A. Logunov
    M. A. Mestvirishvili
    Theoretical and Mathematical Physics, 2001, 129 : 1439 - 1445
  • [48] Higher-order differential variational principle and differential equations of motion for mechanical systems in event space
    Zhang Xiang-Wu
    Li Yuan-Yuan
    Zhao Xiao-Xia
    Luo Wen-Feng
    CHINESE PHYSICS B, 2014, 23 (10)
  • [49] Higher-order differential variational principle and differential equations of motion for mechanical systems in event space
    张相武
    李院院
    赵小侠
    罗文峰
    Chinese Physics B, 2014, 23 (10) : 296 - 302
  • [50] HIGHER-ORDER ACTION-VARIATIONAL APPROACH TO LATTICE GAUGE-THEORY
    KERLER, W
    SCHULKE, L
    PHYSICS LETTERS B, 1988, 201 (01) : 123 - 127