Validating variational principle for higher order theory of gravity

被引:4
|
作者
Ruz, Soumendranath [1 ]
Sarkar, Kaushik [1 ]
Sk, Nayem [1 ]
Sanyal, Abhik Kumar [2 ]
机构
[1] Univ Kalyani, Dept Phys, Nadia 741235, India
[2] Jangipur Coll, Dept Phys, Murshidabad 742213, India
关键词
f(R) gravity; variational principle; Noether symmetry; NOETHER SYMMETRY; GRAVITATIONAL ACTION; QUANTUM COSMOLOGY; TERMS;
D O I
10.1142/S0217732315501199
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Metric variation of higher order theory of gravity requires fixing of the Ricci scalar in addition to the metric tensor at the boundary. Fixing Ricci scalar at the boundary implies that the classical solutions are fixed once and forever to the de Sitter or antide Sitter (dS/AdS) solutions. Here, we justify such requirement from the standpoint of Noether symmetry.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Higher-order gravity and the classical equivalence principle
    Accioly, Antonio
    Herdy, Wallace
    MODERN PHYSICS LETTERS A, 2017, 32 (34)
  • [2] Anisotropic instability in a higher order gravity theory
    Pookkillath, Masroor C.
    De Felice, Antonio
    Starobinsky, Alexei A.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (07):
  • [3] Noether symmetry in the higher order gravity theory
    Sanyal, AK
    Modak, B
    Rubano, C
    Piedipalumbo, E
    GENERAL RELATIVITY AND GRAVITATION, 2005, 37 (02) : 407 - 417
  • [4] Noether symmetry in the higher order gravity theory
    B. Modak
    A. Ghose
    R. N. Bose
    General Relativity and Gravitation, 2005, 37 : 985 - 996
  • [5] Noether symmetry in the higher order gravity theory
    A. K. Sanyal
    B. Modak
    C. Rubano
    E. Piedipalumbo
    General Relativity and Gravitation, 2005, 37 : 407 - 417
  • [6] Noether symmetry in the higher order gravity theory
    Modak, B
    Ghose, A
    Bose, RN
    GENERAL RELATIVITY AND GRAVITATION, 2005, 37 (05) : 985 - 996
  • [7] Higher-order piezoelectric plate theory derived from a three-dimensional variational principle
    Batra, RC
    Vidoli, S
    AIAA JOURNAL, 2002, 40 (01) : 91 - 104
  • [8] Variational principle for the correction of the third order energy in perturbation theory
    Dmitriev, Yu. Yu.
    Yuriev, M. S.
    CHEMICAL PHYSICS LETTERS, 1969, 4 (01) : 43 - 44
  • [9] Foundations of higher-order variational theory on Grassmann fibrations
    Urban, Zbynek
    Krupka, Demeter
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (07)
  • [10] On the Caratheodory Form in Higher-Order Variational Field Theory
    Urban, Zbynek
    Volna, Jana
    SYMMETRY-BASEL, 2021, 13 (05):