Complex dynamics in multistable systems

被引:179
|
作者
Feudel, Ulrike [1 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, ICBM, D-26111 Oldenburg, Germany
来源
关键词
coexisting attractors; multistability; attractor hopping; fractal basin boundaries;
D O I
10.1142/S0218127408021233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The coexistence of several stable states for a given set of parameters has been observed in many natural and experimental systems as well as in theoretical models. This paper gives an overview over the wide range of applications in different disciplines of science. Furthermore, different system classes possessing multistability are analyzed in terms of the appearance of coexisting attractors and their basins of attraction. It is shown that multistable systems are very sensitive to perturbations leading to a noise-induced hopping process between attractors. The role of chaotic saddles in the escape from attractors in multistable systems is discussed.
引用
收藏
页码:1607 / 1626
页数:20
相关论文
共 50 条
  • [21] Generation mechanisms of strange nonchaotic attractors and multistable dynamics in a class of nonlinear economic systems
    Gaolei Li
    Jicheng Duan
    Denghui Li
    Na Wang
    Nonlinear Dynamics, 2023, 111 : 10617 - 10627
  • [22] Dynamics of complex systems - Reply
    不详
    IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 1997, 16 (04): : 10 - 11
  • [23] Complex dynamics in learning systems
    Wong, KYM
    Li, S
    Tong, YW
    PHYSICA A, 2000, 288 (1-4): : 397 - 401
  • [24] Complex dynamics in gelling systems
    L. de Arcangelis
    E. Del Gado
    A. Coniglio
    The European Physical Journal E, 2002, 9 : 277 - 282
  • [25] DYNAMICS OF COMPLEX MULTIBODY SYSTEMS
    SCHIEHLEN, WO
    SOLID MECHANICS ARCHIVES, 1984, 9 (02): : 159 - 195
  • [26] Complex dynamics in gelling systems
    de Arcangelis, L
    Del Gado, E
    Coniglio, A
    EUROPEAN PHYSICAL JOURNAL E, 2002, 9 (03): : 277 - 282
  • [27] Complex Systems and Fractional Dynamics
    Lopes, Antonio M.
    Tenreiro Machado, J. A.
    ENTROPY, 2018, 20 (07):
  • [28] Memristors and nonequilibrium stochastic multistable systems
    Spagnolo, B.
    Dubkov, A. A.
    Carollo, A.
    Valenti, D.
    CHAOS SOLITONS & FRACTALS, 2022, 164
  • [29] On conditions of robust synchronization for multistable systems
    Ahmed, Hafiz
    Ushirobira, Rosane
    Efimov, Denis
    Perruquetti, Wilfrid
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 181 - 185
  • [30] MULTISTABLE WEIGHT ELEMENT FOR LEARNABLE SYSTEMS
    MINDER, R
    SEQUIN, C
    BALDINGE.E
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1970, 21 (04): : 675 - &