Metaheuristics for multiobjective optimisation

被引:0
|
作者
Liefooghe, Arnaud [1 ]
机构
[1] Univ Lille 1, LIFL, CNRS, INRIA Lille Nord Europe, F-59650 Villeneuve Dascq, France
来源
关键词
Combinatorial optimisation; Multi-objective optimisation; Cooperative methods; Metaheuristic; Routing; Scheduling;
D O I
10.1007/s10288-010-0137-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This is a summary of the author's PhD thesis supervised by Laetitia Jourdan and El-Ghazali Talbi and defended on 8 December 2009 at the Universit, Lille 1. The thesis is written in French and is available from http://sites.google.com/site/arnaudliefooghe/. This work deals with the design, implementation and experimental analysis of metaheuristics for solving multiobjective optimisation problems, with a particular interest on hard and large combinatorial problems from the field of logistics. After focusing on a unified view of multiobjective metaheuristics, we propose new cooperative, adaptive and parallel approaches. The performance of these methods are experimented on a scheduling and a routing problem involving two or three objective functions. We finally discuss how to adapt such metaheuristics during the search process in order to handle uncertainty that may occur from many different sources.
引用
收藏
页码:219 / 222
页数:4
相关论文
共 50 条
  • [31] Particle swarm metaheuristics for robust optimisation with implementation uncertainty
    Hughes, Martin
    Goerigk, Marc
    Dokka, Trivikram
    COMPUTERS & OPERATIONS RESEARCH, 2020, 122
  • [32] Scientific applications in the cloud: Resource optimisation based on metaheuristics
    Mokhtari A.
    Azizi M.
    Gabli M.
    Scalable Computing, 2020, 21 (04): : 649 - 660
  • [33] Multi-surrogate-assisted metaheuristics for crashworthiness optimisation
    Aye, Cho Mar
    Pholdee, Nantiwat
    Yildiz, Ali R.
    Bureerat, Sujin
    Sait, Sadiq M.
    INTERNATIONAL JOURNAL OF VEHICLE DESIGN, 2019, 80 (2-4) : 223 - 240
  • [34] Comparing multiobjective swarm intelligence metaheuristics for DNA motif discovery
    Gonzalez-Alvarez, David L.
    Vega-Rodriguez, Miguel A.
    Gomez-Pulido, Juan A.
    Sanchez-Perez, Juan M.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (01) : 314 - 326
  • [35] Metaheuristics for multiobjective optimization in energy-efficient job shops
    Gonzalez, Miguel A.
    Rasconi, Riccardo
    Oddi, Angelo
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 115
  • [36] Hyper-Heuristics to customise metaheuristics for continuous optimisation
    Cruz-Duarte, Jorge M.
    Amaya, Ivan
    Ortiz-Bayliss, Jose C.
    Conant-Pablos, Santiago E.
    Terashima-Marin, Hugo
    Shi, Yong
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 66
  • [37] SCIENTIFIC APPLICATIONS IN THE CLOUD: RESOURCE OPTIMISATION BASED ON METAHEURISTICS
    Mokhtari, Anas
    Azizi, Mostafa
    Gabli, Mohammed
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2020, 21 (04): : 649 - 660
  • [38] Management of evolutionary MAS for multiobjective optimisation
    Dobrowolski, G
    Kisiel-Dorohinicki, M
    IUTAM SYMPOSIUM ON EVOLUTIONARY METHODS IN MECHANICS, 2004, 117 : 81 - 90
  • [39] Disjunctive Programming for Multiobjective Discrete Optimisation
    Bektas, Tolga
    INFORMS JOURNAL ON COMPUTING, 2018, 30 (04) : 625 - 633
  • [40] Multiobjective design optimisation of coronary stents
    Pant, Sanjay
    Limbert, Georges
    Curzen, Nick P.
    Bressloff, Neil W.
    BIOMATERIALS, 2011, 32 (31) : 7755 - 7773