High points of branching Brownian motion and McKean's Martingale in the Bovier-Hartung extremal process

被引:3
|
作者
Glenz, Constantin [1 ]
Kistler, Nicola [1 ]
Schmidt, Marius A. [1 ]
机构
[1] JW Goethe Univ Frankfurt, Frankfurt, Germany
关键词
(in)homogeneous Branching Brownian motions; McKean martingale; Bovier-Hartung extremal process; CONVERGENCE; POLYMERS; MAXIMUM;
D O I
10.1214/18-ECP187
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It has been proved by Bovier & Hartung [Elect. J. Probab. 19 (2014)] that the maximum of a variable-speed branching Brownian motion (BBM) in the weak correlation regime converges to a randomly shifted Gumbel distribution. The random shift is given by the almost sure limit of McKean's martingale, and captures the early evolution of the system. In the Bovier-Hartung extremal process, McKean's martingale thus plays a role which parallels that of the derivative martingale in the classical BBM. In this note, we provide an alternative interpretation of McKean's martingale in terms of a law of large numbers for high-points of BBM, i.e. particles which lie at a macroscopic distance from the edge. At such scales, 'McKean-like martingales' are naturally expected to arise in all models belonging to the BBM-universality class.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 9 条
  • [1] The extremal process of branching Brownian motion
    Louis-Pierre Arguin
    Anton Bovier
    Nicola Kistler
    [J]. Probability Theory and Related Fields, 2013, 157 : 535 - 574
  • [2] The extremal process of branching Brownian motion
    Arguin, Louis-Pierre
    Bovier, Anton
    Kistler, Nicola
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (3-4) : 535 - 574
  • [3] An ergodic theorem for the extremal process of branching Brownian motion
    Arguin, Louis-Pierre
    Bovier, Anton
    Kistler, Nicola
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (02): : 557 - 569
  • [4] THE EXTREMAL POINT PROCESS OF BRANCHING BROWNIAN MOTION IN Rd
    Berestycki, Julien
    Kim, Yujin h.
    Lubetzky, Eyal
    Mallein, Bastien
    Zeitouni, Ofer
    [J]. ANNALS OF PROBABILITY, 2024, 52 (03): : 955 - 982
  • [5] POISSONIAN STATISTICS IN THE EXTREMAL PROCESS OF BRANCHING BROWNIAN MOTION
    Arguin, Louis-Pierre
    Bovier, Anton
    Kistler, Nicola
    [J]. ANNALS OF APPLIED PROBABILITY, 2012, 22 (04): : 1693 - 1711
  • [6] EXTENDED CONVERGENCE OF THE EXTREMAL PROCESS OF BRANCHING BROWNIAN MOTION
    Bovier, Anton
    Hartung, Lisa
    [J]. ANNALS OF APPLIED PROBABILITY, 2017, 27 (03): : 1756 - 1777
  • [7] The extremal process of two-speed branching Brownian motion
    Bovier, Anton
    Hartung, Lisa
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 28
  • [8] Fisher-KPP equation with small data and the extremal process of branching Brownian motion
    Mytnik, Leonid
    Roquejoffre, Jean-Michel
    Ryzhik, Lenya
    [J]. ADVANCES IN MATHEMATICS, 2022, 396
  • [9] Extremal points of high-dimensional random walks and mixing times of a Brownian motion on the sphere
    Eldan, Ronen
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (01): : 95 - 110